DOI QR코드

DOI QR Code

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Huang, Bo (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • He, Bo (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Xiao, Ye (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Yang, Xiaoliang (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University) ;
  • Lian, Youyun (Southwest Institute of Physics) ;
  • Liu, Xiang (Southwest Institute of Physics) ;
  • Tang, Jun (Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University)
  • 투고 : 2018.07.27
  • 심사 : 2018.09.25
  • 발행 : 2019.02.25

초록

W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

키워드

참고문헌

  1. J.W. Davis, V.R. Barabash, A. Makhankov, et al., Assessment of tungsten for use in the ITER plasma facing components 1, J. Nucl. Mater. 258-263 (1998) 308-312. https://doi.org/10.1016/S0022-3115(98)00285-2
  2. M. Shimada, G. Cao, T. Otsuka, et al., Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten, Nucl. Fusion 55 (2015), 13008-13016(13009). https://doi.org/10.1088/0029-5515/55/1/013008
  3. G. Janeschitz, Plasmaewall interaction issues in ITER, J. Nucl. Mater. 290-293 (2001) 1-11. https://doi.org/10.1016/S0022-3115(00)00623-1
  4. H. Bolt, V. Barabash, W. Krauss, et al., Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater. 329-333 (2004) 66-73. https://doi.org/10.1016/j.jnucmat.2004.04.005
  5. J. Linke, Plasma facing materials and components for future fusion devicesddevelopment, characterization and performance under fusion specific loading conditions, Phys. Scripta 2006 (2006) 45. https://doi.org/10.1088/0031-8949/2006/T123/006
  6. C.C. Ge, Z.J. Zhou, W.P. Shen, et al., Status of R&D on fusion materials in institute of nuclear materials in USTB, Fusion Eng. Des. 85 (2010) 1080-1084. https://doi.org/10.1016/j.fusengdes.2010.01.023
  7. P. Norajitra, L.V. Boccaccini, A. Gervash, et al., Development of a helium-cooled divertor: material choice and technological studies, J. Nucl. Mater. 367-370 (2007) 1416-1421. https://doi.org/10.1016/j.jnucmat.2007.04.027
  8. S. Lang, Q. Yan, N. Sun, et al., Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1wt.%TiC alloy via chemical method, J. Alloy. Comp. 660 (2015) 184-192.
  9. M. Jochen, Linke, T. Hirai, et al., Performance of plasma-facing materials under intense thermal loads in tokamaks and stellarators, Fusion Technol. 46 (2004) 142-151. https://doi.org/10.13182/FST04-A550
  10. T. Hirai, K. Ezato, P. Majerus, ITER relevant high heat flux testing on plasma facing surfaces, Mater. Trans. 46 (2005) 412-424. https://doi.org/10.2320/matertrans.46.412
  11. D.M. Moon, R.C. Koo, Mechanism and kinetics of bubble formation in doped tungsten, Metall. Mater. Trans. B 2 (1971) 2115-2122. https://doi.org/10.1007/BF02917539
  12. P. Schade, 100 years of doped tungsten wire, Int. J. Refract. Metal. Hard Mater. 28 (2010) 648-660. https://doi.org/10.1016/j.ijrmhm.2010.05.003
  13. J. Linke, T. Loewenhoff, V. Massaut, et al., Performance of different tungsten grades under transient thermal loads, Nucl. Fusion 51 (2011) 600-606.
  14. G. Pintsuk, I. Uytdenhouwen, Thermo-mechanical and thermal shock characterization of potassium doped tungsten, Int. J. Refract. Metals Hard Mater. 28 (2010) 661-668. https://doi.org/10.1016/j.ijrmhm.2010.03.001
  15. X. Zhang, S. Lyu (Eds.), Variational EM Learning of DSBNs with Conditional Deep Boltzmann Machines. International Conference on Artificial Neural Networks, Springer, 2014.
  16. B. Huang, B. He, Y. Xiao, et al., Microstructure and bubble formation of Al-K-Si doped tungsten prepared by spark plasma sintering, Int. J. Refract. Metals Hard Mater. 54 (2016) 335-341. https://doi.org/10.1016/j.ijrmhm.2015.08.005
  17. B. Huang, Y. Xiao, B. He, et al., Effect of potassium-doping on the thermal shock behavior of tungsten, Int. J. Refract. Metals Hard Mater. 51 (2015) 19-24. https://doi.org/10.1016/j.ijrmhm.2015.02.001
  18. X. Shu, H. Qiu, B. Huang, et al., Preparation and characterization of potassium doped tungsten, J. Nucl. Mater. 440 (2013) 414-419. https://doi.org/10.1016/j.jnucmat.2013.05.059
  19. B. He, B. Huang, Y. Xiao, et al., Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy, J. Alloy. Comp. 686 (2016) 298-305. https://doi.org/10.1016/j.jallcom.2016.05.010
  20. Y. Xiao, B. Huang, B. He, et al., Effect of molybdenum doping on the microstructure, micro-hardness and thermal shock behavior of W K Mo Ti Y alloy, J. Alloy. Comp. 678 (2016) 533-540. https://doi.org/10.1016/j.jallcom.2016.04.027
  21. W. Yuan, S.K. Panigrahi, J.Q. Su, et al., Influence of grain size and texture on HallePetch relationship for a magnesium alloy, Scripta Mater. 65 (2011) 994-997. https://doi.org/10.1016/j.scriptamat.2011.08.028
  22. R.M. German, A. Bose, S.S. Mani, Sintering time and atmosphere influences on the microstructure and mechanical properties of tungsten heavy alloys, Metall. Trans. A 23 (1992) 211-219. https://doi.org/10.1007/BF02660866
  23. B.P. Bewlay, C.L. Briant, The formation and the role of potassium bubbles in NS-doped tungsten, Int. J. Refract. Metals Hard Mater. 13 (1995) 137-159. https://doi.org/10.1016/0263-4368(94)00030-1
  24. G.M. Song, Y.J. Wang, Y. Zhou, Thermomechanical properties of TiC particlereinforced tungsten composites for high temperature applications, Int. J. Refract. Metals Hard Mater. 21 (2003) 1-12. https://doi.org/10.1016/S0263-4368(02)00105-1
  25. Y. Kitsunai, H. Kurishita, H. Kayano, et al., Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC, J. Nucl. Mater. 271-272 (1999) 423-428. https://doi.org/10.1016/S0022-3115(98)00753-3
  26. H. Kurishita, Y. Amano, S. Kobayashi, et al., Development of ultra-fine grained WeTiC and their mechanical properties for fusion applications, J. Nucl. Mater. 367 (2007) 1453-1457. https://doi.org/10.1016/j.jnucmat.2007.04.008
  27. Z.M. Xie, R. Liu, Q.F. Fang, et al., Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten, J. Nucl. Mater. 444 (2014) 175-180. https://doi.org/10.1016/j.jnucmat.2013.09.045
  28. G. Pintsuk, H. Kurishita, J. Linke, et al., Thermal shock response of fine- and ultra-fine-grained tungsten-based materials, Phys. Scripta 2011 (2011) 1972-1978.

피인용 문헌

  1. Densification, microstructure and mechanical properties of spark plasma sintered Ni-17%Cr binary alloys vol.101, pp.5, 2019, https://doi.org/10.1007/s00170-018-3062-y
  2. Mechanical Properties and Microstructure of W-6Ni-4Co Alloy by a Two-Step Sintering Process vol.9, pp.6, 2019, https://doi.org/10.3390/met9060680
  3. Modification of the interface and its influence on the performance of W-6 wt% TiC composite vol.819, 2021, https://doi.org/10.1016/j.msea.2021.141442