DOI QR코드

DOI QR Code

Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Karimiasl, Mahsa (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Civalek, Omer (Akdeniz University, Engineering Faculty, Civil Engineering Dept., Division of Mechanics) ;
  • Vinyas, Mahesh (Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology)
  • Received : 2018.09.14
  • Accepted : 2019.03.18
  • Published : 2019.03.25

Abstract

This paper infer the transient vibration of piezoelectric sandwich nanobeams, In present work, the flexoelectric effect on the mechanical properties of vibration piezoelectric sandwich nanobeam with different boundary conditions is investigated. According to the Nonlocal elasticity theory in nanostructures, the flexoelectricity is believed to be authentic for such size-dependent properties. The governing equations are derived by Hamilton's principle and boundary condition solved by Galerkin-based solution. This research develops a nonlocal flexoelectric sandwich nanobeam supported by Winkler-Pasternak foundation. The results of this work indicate that natural frequencies of a sandwich nanobeam increase by increasing the Winkler and Pasternak elastic constant. Also, increasing the nonlocal parameter at a constant length decreases the natural frequencies. By increasing the length to thickness ratio (L/h) of nanobeam, the nonlocal frequencies reduce.

Keywords

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55.
  2. Altabey, W.A. (2017), "An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS", Adv. Nano Res., Int. J., 5(4), 337-357.
  3. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects to different beam theories", Int. J. Eng. Sci., 49, 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007
  4. Ansari, R., Oskouie, M.F., Gholami, R. and Sadeghi, F. (2016), "Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory", Compos. Part B: Eng., 89, 316-327. https://doi.org/10.1016/j.compositesb.2015.12.029
  5. Arefi, M. and Zenkour, A.M. (2016), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a kelvin-voigt viscoelastic nanoplate and two piezoelectric layers", Acta Mechanica, 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
  6. Asemi, H.R., Asemi, S.R., Farajpour, A. and Mohammadi, M. (2015), "Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads", Physica E: Low-dimens. Syst. Nanostruct., 68, 112-122. https://doi.org/10.1016/j.physe.2014.12.025
  7. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.21474/IJAR01/4731
  8. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  9. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  10. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162.
  11. Castrucci, P. (2014), "Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices", Adv. Nano Res., Int. J., 2(1), 23-56. https://doi.org/10.12989/anr.2014.2.1.023
  12. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A. A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  13. Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
  14. Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  15. Ebrahimi, F. and Barati, M.R. (2016b), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795
  16. Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
  17. Ebrahimi, F. and Barati, M.R. (2016d), "Buckling analysis of smart size-dependent higher order magneto-electro-thermoelastic functionally graded nanosize beams", J. Mech., 33(1), 23-33. https://doi.org/10.1017/jmech.2016.46
  18. Ebrahimi, F. and Boreiry, M. (2015), "Investigating various surface effects on nonlocal vibrational behavior of nanobeams", Appl. Phys. A, 121(3), 1305-1316. https://doi.org/10.1007/s00339-015-9512-6
  19. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  20. Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016b), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., Int. J., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
  21. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192.
  22. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
  23. Elishakoff, I. and Soret, C. (2013), "A consistent set of nonlocal Bresse-Timoshenko equations for nanobeams with surface effects", J. Appl. Mech., 80(6), 061001. https://doi.org/10.1115/1.4023630
  24. Eringen, A. (1968), "Mechanics of micromorphic continua", In: (E. Kroner Ed.), Mechanics of Generalized Continua, Springer-Verlag, pp. 18-35.
  25. Eringen, A. (1976), "Nonlocal micropolar field theory", In: Continuum Physics, (A.C. Eringen Ed.), Academic Press, New York, NY, USA.
  26. Eringen, A. (2002), Nonlocal Continuum Field Theories, Springer, New York, NY, USA.
  27. Eringen, A. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3), 141-147. https://doi.org/10.1016/j.ijengsci.2005.11.002
  28. Eringen, A. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  29. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169.
  30. Elmerabet, A.H., Heireche, H., Tounsi, A. and Semmah, A. (2017), "Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model", Adv. Nano Res., Int. J., 5(1), 1-12.
  31. Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
  32. Gheshlaghi, B. and Hasheminejad, S. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014
  33. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  34. Hosseini, M., Jamalpoor, A. and Fath, A. (2016), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccanica, 52(6), 1381-1396. https://doi.org/10.1007/s11012-016-0469-0
  35. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  36. Jamalpoor, A., Ahmadi-Savadkoohi, A., Hossein, M. and Hosseini-Hashemi, S. (2016), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco Pasternak medium via nonlocal elasticity theory", Eur. J. Mech. / A Solids, 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002
  37. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., Int. J., 65(5), 621-631.
  38. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018a), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110.
  39. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  40. Ke, L.-L. and Wang, Y.-S. (2012), "Thermoelectric-Mechanical Vibration of Piezoelectric Nanobeams Based on the Nonlocal Theory", Smart Mater. Struct., 121(1), 250-268.
  41. Ke, L.L., Liu, C. and Wang, Y.S. (2015), "Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions", Physica E: Low-dimens. Syst. Nanostruct., 66, 93-106. https://doi.org/10.1016/j.physe.2014.10.002
  42. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
  43. Lee, H.L. and Chang, W.J. (2010), "Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory", J. Appl. Phys., 108(9), 093503. https://doi.org/10.1063/1.3503853
  44. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  45. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  46. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Buckling and post-buckling of size- dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings", Int. J. Struct. Stabil. Dyn., 14(3), 1350067. https://doi.org/10.1142/S0219455413500673
  47. Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), "Nonlinear vibration of nonlocal piezoelectric nanoplates", Int. J. Struct. Stabil. Dyn., 15(8), 1540013. https://doi.org/10.1142/S0219455415400131
  48. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061
  49. Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the vibration of nonuniform nan cantilever based on nonlocal elasticity theory", Physica E: Low-dimens. Syst. Nanostruct., 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
  50. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  51. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  52. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006
  53. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  54. Stelson, K.A. (2018), "Academic fluid power research in the USA", Int. J. Hydromechatronics, 1(1), 126-152.
  55. Tian, T., Nakano, M. and Li, W. (2018), Applications of shear thickening fluids: a review", Int. J. Hydromechatronics, 1(2), 238-257. https://doi.org/10.1504/IJHM.2018.092733
  56. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  57. Wang, K.F. and Wang, B.L. (2011), "vibration of nanoscale plates with surface energy via nonlocal elasticity", Physica E: Lowdimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019
  58. Wang, Y.Z., Li, F.M. and Kishimoto, K. (2016a), "Effects of Axial Load and Elastic Matrix on Flexural Wave Propagation in Nanotube with Nonlocal Timoshenko Beam Model", J. Vib. Acoust., 134(3), 031011. https://doi.org/10.1115/1.4005832
  59. Wang, W., Li, P., Jin, F. and Wang, J. (2016b), "Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects", Compos. Struct., 140, 758-775. https://doi.org/10.1016/j.compstruct.2016.01.035
  60. Xu, M. (2006), "Free transverse vibrations of nano-to-micron scale beams", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2074), pp. 2977-2995. https://doi.org/10.1098/rspa.2006.1712
  61. Yan, Z. and Jiang, L. (2011), "The Vibrational and Buckling Behaviors of Piezoelectric Nanobeams with Surface Effects", Nanotechnology, 22(1), 245-263.
  62. Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and inplane constraints", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, (p. rspa20120214).
  63. Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  64. Zhang, Z. and Jiang, L. (2014), "Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity", J. Appl. Phys., 116(13), 134308. https://doi.org/10.1063/1.4897367
  65. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137.

Cited by

  1. Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects vol.26, pp.8, 2020, https://doi.org/10.1007/s00542-020-04802-z
  2. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
  3. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.001
  4. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2019, https://doi.org/10.12989/anr.2021.10.3.281
  5. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.203