DOI QR코드

DOI QR Code

CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성

Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses

  • 서충길 (호원대학교 자동차기계공학과)
  • Seo, Choong-Kil (Department of Automotive & Mechanical Engineering, Howon University)
  • 투고 : 2019.01.31
  • 심사 : 2019.04.05
  • 발행 : 2019.04.30

초록

친환경자동차의 보급 확대를 위한 정책수립과 기술개발이 지속적으로 이루어지고 있는 실정이나 아직까지도 내연기관이 차지하는 비중은 약 95% 차지하고 있다. 화석연료를 기반으로 하는 내연기관의 엄격한 배기가스규제를 충족시키기 위해 자동차와 선박용 후처리장치의 비중이 점차로 증가하고 있다. 이 연구는 CNG 버스의 post Euro-VI 배기대응을 위한 기초연구로써, Pd 대체 전이금속 영향, 촉매 체적 영향 그리고 공간속도에 따른 기초 특성을 파악하는 것이다. 촉매는 제조되었고 모델가스반응장치로 실험하였다. 3Pd가 포함된 NGOC 촉매는 $300^{\circ}C$에서 22%, $350^{\circ}C$에서 48% 그리고 $500^{\circ}C$에서 약 75%의 $CH_4$ 저감 능력을 나타내며 촉매 활성이 가장 높았다. 전이금속 3wt%가 포함된 3Co NGOC는 산화능력이 우수한 물질로써, 2nm급의 작은 사이즈로 촉매 분산도가 향상되어 de-NO/CO 전환율이 높았다. NGOC+LNT+SCR 촉매시스템의 체적은 $De-CH_4/NOx$ 성능과 촉매비용을 고려할 때 Total score가 165를 나타낸 1.5+0.5+0.5 조합이 최적이었다. SV $14,000h^{-1}$일 경우 $CH_4$ 저감 성능은 약 20% 수준으로 가장 높았고, SV $56,000h^{-1}$의 경우가 약 5% 수준으로 가장 낮았다. 공간속도가 작으면 유속이 감소하여 촉매 체적에 잔류하는 시간이 길어지므로 유해가스가 저감되었기 때문이다.

The policy-making and technological development for the supply expansion of eco-friendly automobiles has been continuing, but the internal combustion engines still accounts for about 95%. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. This study is a basic study for the post-Euro-VI exhaust response of CNG buses, and it is to investigate the basic characteristics according to Pd substitution transition metal effect, catalyst volume effect and space velocity. A catalysts was prepared and tested using a model gas reactor. The NGOC catalyst with 3Pd exhibited the highest catalytic activity with 22% at $300^{\circ}C$, 48% at $350^{\circ}C$ and about 75% at $500^{\circ}C$. 3Co NGOC containing 3wt% of transition metal was excellent in oxidation ability, and it was small in size of 2nm, and the degree of catalyst dispersion was improved and de-NO/CO conversion was high. The volume of the NGOC-LNT-SCR catalyst system was optimal in the combination of 1.5+0.5+0.5 with a total score of 165, considering $de-CH_4/NOx$ performance and catalyst cost. For SV $14,000h^{-1}$, the $CH_4$ reduction performance was the highest at about 20%, while the SV $56,000h^{-1}$ was the lowest at about 5%. If the space velocity is small, the flow velocity decreases and the time remaining in the catalyst volume become long, so that the harmful gas was reduced.

키워드

SHGSCZ_2019_v20n4_626_f0001.png 이미지

Fig. 1. Schematic diagram of experimental apparatus

SHGSCZ_2019_v20n4_626_f0002.png 이미지

Fig. 2. Conversion rate according to kind of transition metal

SHGSCZ_2019_v20n4_626_f0003.png 이미지

Fig. 3. TEM according to metal transition

SHGSCZ_2019_v20n4_626_f0004.png 이미지

Fig. 4. Conversion rate according to kind of transition metal

SHGSCZ_2019_v20n4_626_f0005.png 이미지

Fig. 5. Conversion rate according to kind of transition meta

SHGSCZ_2019_v20n4_626_f0006.png 이미지

Fig. 6. Schematic diagram of NOx reduction and NH3 generation according to axial length on LNT catalyst

Table 1. Specification of NGOC catalysts

SHGSCZ_2019_v20n4_626_t0001.png 이미지

Table 2. Specification of LNT and SCR catalysts

SHGSCZ_2019_v20n4_626_t0002.png 이미지

Table 3. Model gas components for evaluating the catalysts performance of CNG bus

SHGSCZ_2019_v20n4_626_t0003.png 이미지

Table 4. Evaluation of volume optimization on after-treatment system of NGOC-LNT-SCR

SHGSCZ_2019_v20n4_626_t0004.png 이미지

Table 5. A cost on after-treatment system of NGOC- LNT-SCR

SHGSCZ_2019_v20n4_626_t0005.png 이미지

참고문헌

  1. C. K. Seo, "Research on Improvement of $CH_{4}$ Reduction Performance of NGOC for CNG Bus", Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 5, pp. 708-715. 2017. DOI: https://dx.doi.org/10.5762/KAIS.2017.18.5.708
  2. X. Jin, "Removal of Cr(VI) from aqueous Solution by Surfactant-modified Kaolinite", J. Ind. Eng. Chem., Vol. 20, No. 2, pp. 3025-3032, 2014. DOI: https://dx.doi.org/10.1016/j.jiec.2013.11.0.38
  3. L. Huang, Q. Chan, X. Wu, Y. Liu, "The simultaneous Degradation of Phenol and Reduction of Cr(VI) by $TiO_{2}$/CNTs, J. Ind. Eng. Chem., Vol. 18, No. 2, pp. 574-580, 2012. DOI: https://dx.doi.org/10.1016/j.jiec.2011.11.060
  4. A. K. Thakur, G. M. Nisola, L. A. Limjuco, K. J. Parohing, R. E. C. Torrejos, V. K. Shahi, W. J. Chung, "Polyethylenimine-modified mesoporous Silica Adsorbent for simultaneous Removal of CD(II) and Ni (II) from aqueous solution", J. Ind. Eng. Chem., Vol. 49, No. 5, pp. 133-144, 2017. DOI: https://dx.doi.org/10.1016/j.jiec.2017.01.019
  5. D. Wang, Y. Ye, H. Liu, H. Ma, W. Zhang, Chemosphere, "Effect of Alkaline Precipitation on Cr Species of Cr(III)-bearing complexes typically used in the Tannery Industry", Chemosphere, Vol. 193, No. 2, pp. 42-49, 2018. DOI: https://dx.doi.org/10.1016/j.chemosphere.2017.11.006
  6. K. H. Hong, J. H. Kim, K. Chang, J. Kwon, "The Role of Cr on Oxide Formation on Ni-Cr Alloys: A theoretical study", Computational Mater. Sci., Vol. 142, No. 2, pp. 185-191, 2018. DOI: https://dx.doi.org/10.1016/j.commatsci.2017.09.056