DOI QR코드

DOI QR Code

Examination of Allowable Displacement by Structural Analysis of IPM Bridge

토압분리형 교량의 구조해석을 통한 허용 변위량 검토

  • Kim, Hong-Bae (Structural Safety Team of Gangwon Headquarters, Korea Expressway Corporation) ;
  • Han, Heui-Soo (Department of Civil Engineering, Kumoh Institute of Technology)
  • 김홍배 (한국도로공사 강원본부 구조물안전팀) ;
  • 한희수 (금오공과대학교 토목공학과)
  • Received : 2019.01.31
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

Because the pile-bent of IPM Bridge is projected from the soil surface, excessive displacement of abutment can be induced. According to design guide of IPM Bridge, the shape of the bridges used in this study was applied to the maximum applicable 120.0m span, 30-degree for skew angle, and 10.0m for the protruded pile-bent height. The maximum displacement by the maximum span application condition of the IPM Bridge was calculated using this bridge model, and the safety of a horizontal displacement of the IPM Bridge was investigated based on the allowable displacement presented by Bozozuk. The maximum horizontal displacement of the IPM Bridge was calculated to be larger in the winter shrinkage condition than in the summer expansion condition, the horizontal displacements were more affected by the length of a bridge than by the skew angle. And the vertical displacement was not affected by the skew angle and length. As the span increases, the horizontal displacement increases significantly, the horizontal displacement at 120.0m span length was found to exceed the allowable displacement proposed by Bozozuk. However, the moment generated in the pile-bent did not exceed the plastic moment.

IPM Bridge는 파일벤트가 지표면으로부터 돌출되어, 교대의 과도한 변위가 유발될 수 있다. 본 연구에 사용된 교량의 형상은 IPM Bridge의 설계지침에 제시된 최대 적용 조건인 경간 120.0m, 사각 30도, 파일벤트의 돌출높이 최대 10.0m를 적용하였다. 이 교량모델을 이용하여, IPM Bridge의 최대 경간 적용조건에 따른 최대 변위를 산정하였으며, Bozozuk가 제시한 허용 변위에 근거하여 IPM Bridge의 수평변위의 안정성을 검토하였다. IPM Bridge의 최대 수평변위는 여름철의 팽창 조건보다는 겨울철의 수축 조건에서 더 크게 산정되었으며, 수평변위는 사각보다는 교량의 길이에 더 큰 영향을 받는 것으로 나타났다. 그리고 수직 변위는 사각과 연장에 큰 영향을 받지 않는 것으로 나타났다. 경간의 증가에 따라 수평변위가 크게 증가되었으며, 연장 120.0m에서의 수평변위는 Bozozuk가 제시한 허용 변위를 초과하는 것으로 나타났다. 하지만, 파일벤트에 발생되는 모멘트가 소성모멘트를 초과하지는 않았다. IPM Bridge는 설계지침에 제시된 최대 적용조건인 파일벤트의 돌출높이 10.0m, 연장 120.0m에서는 수평변위가 과도하게 발생될 수 있으므로, 설계단계에서 면밀한 검토가 필요하다.

Keywords

SHGSCZ_2019_v20n4_534_f0001.png 이미지

Fig. 1. Schematic of IPM bridge [1];

SHGSCZ_2019_v20n4_534_f0002.png 이미지

Fig. 2. Typical integral abutment bridge with 2-spans [9];

SHGSCZ_2019_v20n4_534_f0003.png 이미지

Fig. 3. Moment diagram of pile-bent by thermal load[14]; (a) Horizontal displacement (b) Rotation

SHGSCZ_2019_v20n4_534_f0004.png 이미지

Fig. 4. Allowable displacement of bridge [12]; (a)Shallow foundation, (b) Friction pile, (c)End bearing pile

SHGSCZ_2019_v20n4_534_f0005.png 이미지

Fig. 5. 30.0m PSC girder proposed by Korea express corporation; (a) Side view, (b) Cross-section view

SHGSCZ_2019_v20n4_534_f0006.png 이미지

Fig. 6. Structural analysis model for IPM bridge; (a) Side view, (b) Numerical model, (c) 3D model

SHGSCZ_2019_v20n4_534_f0007.png 이미지

Fig. 7. p-y curve by Reese et al.(1974)[20]

SHGSCZ_2019_v20n4_534_f0008.png 이미지

Fig. 8. Multi-linear spring as p-y curve

SHGSCZ_2019_v20n4_534_f0009.png 이미지

Fig. 9. Verification on allowable displacement according to bridge length of IPM bridge at 30-degree skew; (a) Expansion (b) Contraction

SHGSCZ_2019_v20n4_534_f0010.png 이미지

Fig. 10. Verification on the allowable displacement according to bridge skew of IPM bridge at 120.0m span length; (a) Expansion, (b) Contraction

Table 1. Abutment properties of IPM bridge for analyses

SHGSCZ_2019_v20n4_534_t0001.png 이미지

Table 2. Maximum displacement of IPM bridge at maximum skew (30 degrees)

SHGSCZ_2019_v20n4_534_t0002.png 이미지

Table 3. Maximum displacement of IPM bridge at maximum length of bridge(120.0m)

SHGSCZ_2019_v20n4_534_t0003.png 이미지

References

  1. M. S. Nam, J. N. Do, T. S. Kim, Y. H. Park, H. J. Kim, Development of IPM Bridge, Korea Expressway Corporation Research Institute: Korea, 2016.
  2. M. C. Park, M. S. Nam, "Behavior of integral abutment bridge with partially protruded piles", Geomechanics and Engineering, Vol.14, No.6, pp.601-614, 2018. DOI: http://dx.doi.org/10.12989/gae.2018.14.6.601
  3. M. C. Park, M. S. Nam, "Numerical Analysis of the Behavior of an IPM Bridge According to Super-Structure and Sub-Structure Properties", Sustainability, Vol.10, No.3, pp.833, 2018. DOI: https://doi.org/10.3390/su10030833
  4. W. S. Kim, J. A. Laman, "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Structural Engineering and Mechanics, Vol.46, No.1, pp.53-73, 2013. DOI: https://doi.org/10.12989/sem.2013.46.1.053
  5. S. M. Olson, K. P. Holloway, J. M. Buenker, J. H. Long, J. M. LaFave, "Thermal behavior of IDOT integral abutment bridges and proposed design modifications", FHWA-ICT-12-022, Illinois Center for Transportation, Illinois, pp.1-63, 2013.
  6. KECRI, "Integral Bridge design Guidelines", Korea Expressway Corperation Research Institute, pp.1-59, 2009.
  7. A. Lemnitzer, E. R. Ahlberg, R. L. Nigbor, A. Shamsabadi, J. W. Wallace, J. P. Stewart, "Lateral performance of full-scale bridge abutment wall with granular backfill", Journal of Geo-environmental Engineering, Vol.134, No.4, pp.506-514, 2009. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(506)
  8. Y. H, Park, M. S. Nam, "Behavior of earth pressure and movements on integral abutments." Journal of The Korean Society of Civil Engineers, Vol.27, No.3C, pp.163-173, 2007.
  9. S. Arsoy, J. M. Duncan, R. M. Barker, "Behavior of a Semiintegral Bridge Abutment under Static and Temperature-Induced Cyclic Loading", Journal of Bridge Engineering, Vol.9, No.2, pp.193-199, 2004. DOI: http://dx.doi.org/10.1061/(ASCE)1084-0702(2004)9:2(193)
  10. Korean Geotechnical Society, Structure foundation design standards specification, Ministry of Land, Transport and Maritime Affairs, 2015.
  11. KEC, "IPM Bridge design Guidelines", Korea Expressway Corperation, 2016.
  12. M. Bozozuk, Bridge Foundation Move, Transportation Research Record 678: Tolerable Movements of Bridge Foundation, Sand Drains, K-Test, Slopes, and Culverts, Transportation Research Borad, National Research Council, Washinton, D.C., pp.17-21, 1978.
  13. AASHTO, Standard Specifications for Highway Bridges, 17th edition. Published by the American Association of State Highway and Transportation Officials, USA, 2002.
  14. VTrans IAC. "Integral Abutment Bridge Design Guidelines, 2ed. VTrans Structures Section", Montpelier, Vermont: the State of Vermont, Agency of Transportation, 2008.
  15. T. S. Kim, "Performance Verification and Behavior Analysis of Integrated and Pile Bented Abutment with Mechanically Stabilized Earth Wall Bridge(IPM Bridge)", Thesis paper, Kumoh National Institute of Technology. 2017.
  16. P. D. Egan, Design and performance of reinforced earth bridge abutments. In: Proceedings of the 1st International Bridge Conference, Pittsburgh, PA, pp.92-98, 1984.
  17. L. K. Moulton, J. R. Kula, "Bridge movements and their effects", Public Roads, Vol.44, No.2, pp.62-75, 1980.
  18. L. K. Moulton, H. V. S. GangaRao, G. T. Halvorsen, "Tolerable movement criteria for highway bridges", Report No. FHWA/RD-85/107. U.S. Department of Transportation, Federal Highway Administration, Washington D.C., October 1985.
  19. KEC (2012). "Expressway Construction Guide Specification." Korea Expressway Corperation.
  20. L. C. Reese, W. R. Cox, F. D. Koop, "Analysis of laterally loaded piles in sand", Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, OTC 2080, pp.95-105, 1974. DOI: https://doi.org/10.4043/2080-MS
  21. MLTMA, "Road design manual", Ministry of Land, Transport and Maritime Affairs, 2008.