DOI QR코드

DOI QR Code

Effect of Temperature on Growth of Tin Oxide Nanostructures

산화주석 나노구조물의 성장에서 기판 온도의 효과

  • Kim, Mee-Ree (Department of Intelligent Information Convergence, Mokwon University) ;
  • Kim, Ki-Chul (Department of Intelligent Information Convergence, Mokwon University)
  • 김미리 (목원대학교 지능정보융합학과) ;
  • 김기출 (목원대학교 지능정보융합학과)
  • Received : 2019.01.28
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.

금속산화물 나노구조물은 고감도 가스센서 및 대용량의 리튬이온 전지와 같은 첨단 응용 분야에 활용될 수 있는 유망한 소재로 알려져 있다. 본 연구에서는 산화주석(SnO) 나노구조물을 두 영역 전기로 장치를 이용하여 다양한 온도에서 Si 웨이퍼 기판 위에 성장시켰다. 원료물질인 이산화주석($SnO_2$) 파우더를 알루미나 도가니 속에 넣어서 $1070^{\circ}C$에서 기상화시켰으며, 이송가스인 고순도 Ar 가스를 1000 sccm으로 흘려주었다. SnO 나노구조물은 $350{\sim}450^{\circ}C$, 545 Pa 조건에서 30분 동안 Si 기판 위에 성장되었다. 성장된 SnO 나노구조물의 표면형상을 전계방출형 주사전자현미경(FE-SEM)과 원자힘 현미경(AFM)으로 조사하였다. 또한 성장된 SnO 나노구조물의 결정학적 특징을 Raman 분광학으로 조사하였다. 그 결과 성장된 산화주석은 SnO 상을 가지고 있었다. 기판의 온도가 증가함에 따라 성장된 SnO 나노구조물의 두께와 결정립의 크기도 $424^{\circ}C$까지는 증가하였다. $450^{\circ}C$에서 성장된 SnO 나노구조물은 복잡한 다결정 형태의 표면형상을 나타내었지만, $350{\sim}424^{\circ}C$ 범위에서 성장된 SnO 나노구조물은 기판에 나란한 형태의 단순한 결정구조를 나타내었다.

Keywords

SHGSCZ_2019_v20n4_497_f0001.png 이미지

Fig. 1. Schematic diagram of the SnO nanostructures growth by vapor transport method

SHGSCZ_2019_v20n4_497_f0002.png 이미지

Fig. 2. FE-SEM images of as-grown SnO nanostructures on SiO2(100 nm)/Si substrates for various substrate temperature (a) 350 oC, b) 400 oC, c) 424 oC, and d) 450 oC). The magnification is 100,000 × for all images.

SHGSCZ_2019_v20n4_497_f0003.png 이미지

Fig. 3. AFM images of as-grown SnO nanostructures on SiO2(100 nm)/Si substrates for various substrate temperature (a) 350 oC, b) 400 oC, c) 424 oC, and d) 450 oC)

SHGSCZ_2019_v20n4_497_f0004.png 이미지

Fig. 4. Raman spectra of as-grown SnO nanostructures on SiO2(100 nm)/Si substrates for various substrate temperature 350 oC, 400 oC, 424 oC, and 450 oC. The upper inset is Raman spectra of full range characterization for as-grown SnO nanostructures and Si substrate

References

  1. D. Su, D. Zhou, C. Wang, G. Wang, "Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives", Advanced Functional Materials, Vol. 28, pp. 1800154-1800177, 2018. DOI: https://doi.org/10.1002/adfm.201800154
  2. K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten, "Sodium-ion battery materials and electrochemical properties reviewed", Advanced. Energy Materials, Vol. 8, pp. 1800079-1800128, 2018. DOI: https://doi.org/10.1002/aenm.201800079
  3. A. Chen, W. Liu, H. Hu, T. Chen, B. Ling, K. Liu, "Three-dimensional $TiO_{2}$-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithium-sulfur batteries", Journal of Power Sources, Vol. 400, pp. 23-30, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.08.004
  4. Y. Shia, D. Yanga, R. Yu, Y. Liu, S. M. Hao, S. Zhang, J. Qu, Z. Z. Yu, "Robust binder-free anodes assembled with ultralong mischcrystal $TiO_{2}$ nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage", Journal of Power Sources, Vol. 383, pp. 115-123, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.02.046
  5. W. Yang, W. Yang, L. Kong, A. Song, X. Qin, G. Shao, "Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition", Carbon, Vol. 127, pp. 557-567, 2017. DOI: https://doi.org/10.1016/j.carbon.2017.11.050
  6. Y. Deng, C. Fang, G. Chen, "The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review", Journal of Power Sources, Vol. 304, pp. 81-101, 2015. DOI: http://dx.doi.org/10.1016/j.jpowsour.2015.11.017
  7. T. Gao, K. Huang, X. Qi, H. Li, L. Yang, J. Zhong, "Free-standing $SnO_{2}$ nanoparticles@graphene hybrid paper for advanced lithium-ion batteries", Ceramics Inter, Vol. 40, pp. 6891-6897, 2014. DOI: https://dx.doi.org/10.1016/j.ceramint.2013.12.009
  8. Y. Yang, X. Zhao, H-E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, "Phosphorized $SnO_{2}$/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance", Journal of Materials Chemistry A, Vol. 6, pp. 3479-3487, 2018. DOI: http://doi.org/10.1039/c7ta10435a
  9. Z-S. Wu, G. Zhou, L-C. Yin, W. Ren, F. Li, H-M. Cheng, "Graphene/metal oxide composite electrode materials for energy storage", Nano Energy, Vol. 1, pp. 107-131, 2012. DOI: http://dx.doi.org/10.1016/j.nanoen.2011.11.001
  10. X. Zhou, L-J. Wan, Y-G. Guo, "Binding $SnO_{2}$ nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries", Advanced Materials, Vol. 25, pp. 2152-2157, 2013. DOI: http://doi.org/10.1002/adma.201300071
  11. A. K. Sinha, P. K. Manna, M. Pradhan, C. Mondal, S. M. Yusuf T. Pal, "Tin oxide with a p-n heterojunction ensures both UV and visible light photocatalytic activity", Royal Society of Chemistry Advances, Vol. 4, pp. 208-211, 2014. DOI: http://dx.doi.org/10.1039/c3ra42740d
  12. H. Wang, S. Kalytchuk, H. Yang, L. He, C. Hu, W. Y. Teohc, A. L. Rogach, "Hierarchical growth of $SnO_{2}$ nanostructured films on FTO substrates: structural defects induced by Sn(II) self-doping and their effects on optical and photoelectrochemical properties", Nanoscale, Vol. 6, pp. 6084-6091, 2014. DOI: http://dx.doi.org/10.1039/c4nr00672k
  13. J. Geurts, S. Rau, W. Richter, F. J. Schmitte, "SnO films and their oxidation to $SnO_{2}$: Raman scattering, IR reflectivity and X-ray diffraction", Thin Solid Films, Vol. 121, pp. 217-225, 1984. DOI: https://doi.org/10.1016/0040-6090(84)90303-1