DOI QR코드

DOI QR Code

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System

유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선

  • Park, Woong (The 8th Research and Development Institute, Agency for Defense Development) ;
  • Lee, Jae-Chon (Dept. of Systems Engineering, Ajou University)
  • 박웅 (방과학연구소 제8기술연구본부) ;
  • 이재천 (아주대학교 시스템공학과)
  • Received : 2019.01.11
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

비행시험 운용절차는 유도무기 비행시험 시스템 설계 및 구현을 위한 중요 산출물의 하나로서 비행시험 진행 단계별 임무계획, 수행방법, 안전대책 등을 포함한다. 유도무기체계 개발이 첨단화, 전략화 됨에 따라서 유도무기 비행시험은 점차 복잡화, 광역화 되고 있다. 이에 따라 시험안전을 확보하기 위해서는 비행시험 운용절차의 신뢰성 증대가 요구되었다. 특히, 새로운 개념의 비행시험 수행을 위해서 시험 전 불확실성을 예측하고 대비할 수 있도록 비행시험 운용절차 설계에서 M&S 기법의 적용을 통한 검증이 필요하게 되었다. 관련 연구로서 비행시험의 최적 프레임워크 개발 연구와 비행시험 프로세스 모델기반 개선 연구들이 발표되었지만, 상위 개념의 프로세스를 중심으로 한 결과로서 하위 수준의 비행시험 자원과 연동하는 비행시험 운용절차에 직접 적용하기에는 구체성이 부족하였다. 또한, 기존의 문서기반으로 구성된 비행시험 운용절차는 시험자원의 거동과 성능에 대한 분석능력의 한계로 시험자원의 중복과 누락, 직관적이지 않는 표현으로 운용자 간의 의사소통 저하, 그리고 다수의 비행시험에 적용하기 위한 확장성 부족 등의 문제가 발생하였다. 이를 개선하기 위해 본 논문에서는 모델기반 시스템공학(MBSE) 기법의 적용을 통한 유도무기 비행시험 운용절차의 설계 방법을 제안하였다. 구체적으로 이전의 비행시험 정보를 기반으로 비행시험 진행 단계와 수행방안을 정의한 후, 요구사항으로부터 시험자원의 임무수행을 SysML 모델 기반으로 구성한 템플릿으로 제공하였다. 또한 시뮬레이션 분석을 통해서 정상상황과 비상상황에 대한 최적의 수행절차를 도출하였으며, 사례 적용을 통해서 검증하였다. 본 연구를 통해서 시험자원의 거동과 성능에 대한 분석능력의 증대로 신뢰성이 향상되었고, 다수의 비행시험에 적용할 수 있는 확장성으로 효율성이 증대되었으며, 향후 개발 예정인 유도 무기 비행시험에도 지속적으로 활용할 수 있다.

Keywords

SHGSCZ_2019_v20n4_479_f0001.png 이미지

Fig. 1. Proposed M&S templates by applying MBSE

SHGSCZ_2019_v20n4_479_f0002.png 이미지

Fig. 2. Model organization

SHGSCZ_2019_v20n4_479_f0003.png 이미지

Fig. 4. Modeling of requirements

SHGSCZ_2019_v20n4_479_f0004.png 이미지

Fig. 3. Modeling of CONOPS

SHGSCZ_2019_v20n4_479_f0005.png 이미지

Fig. 5. Modeling of progress phase

SHGSCZ_2019_v20n4_479_f0006.png 이미지

Fig. 6. Functional modeling of TSPI readiness

SHGSCZ_2019_v20n4_479_f0007.png 이미지

Fig. 7. Functional modeling of flight safety judgement

SHGSCZ_2019_v20n4_479_f0008.png 이미지

Fig. 8. Functional modeling of hand over

SHGSCZ_2019_v20n4_479_f0009.png 이미지

Fig. 9. Calculation of missile position

SHGSCZ_2019_v20n4_479_f0010.png 이미지

Fig. 10. Performance modeling of LOS

SHGSCZ_2019_v20n4_479_f0011.png 이미지

Fig. 11. Performance modeling of SNR

SHGSCZ_2019_v20n4_479_f0012.png 이미지

Fig. 12. Performance modeling of link budget

SHGSCZ_2019_v20n4_479_f0013.png 이미지

Fig. 13. Simulation of RADAR LOS

SHGSCZ_2019_v20n4_479_f0014.png 이미지

Fig. 14. Simulation of RADAR SNR

SHGSCZ_2019_v20n4_479_f0015.png 이미지

Fig. 15. Updated modeling of hand over

SHGSCZ_2019_v20n4_479_f0016.png 이미지

Fig. 16. Simulation of FTS link budget

SHGSCZ_2019_v20n4_479_f0017.png 이미지

Fig. 17. Executing self destruction

References

  1. W. Park, J.C. Lee, "Model-Based Approach to Flight Test System Development to Cope with Demand for Simultaneous Guided Missile Flight Tests," Journal of the Korea Academia-Industrial cooperation Society, vol.20, pp.268-277, Jan. 2019. DOI: https://doi.org/10.5762/KAIS.2019.20.1.268
  2. J. Park, C.H. Seo, "International flow and development strategies for the test and evaluation of the weapons system," Defense and Technology, pp. 90-101, Feb. 2013.
  3. S.H. Yeh, "Model-Based Improvement of Flight Test Process by Incorporating Safety for Guided Weapon Systems," Thesis (Ph.D.), Ajou Univ. Department of Systems Engineering, Aug. 2017.
  4. International Council on Systems Engineering (INCOSE), INCOSE Website. [Online]. Available: https://www.incose.org/products-andpublications/ se-vision-2025
  5. Object Management Group (OMG), OMG Website. [Online]. Available: http://www.omgsysml.org/what-is-sysml.htm
  6. S. Friedenthal, M. Sampson, "Model-based systems engineering (MBSE) initiative," in INCOSE MBSE Workshop, Jacksonville, Florida, Jan. 21, 2012.
  7. S.C. Spangelo, D. Kaslow, C. Delp, B. Cole, L. Anderson, E. Fosse, B.S. Gilbert, L. Hartman, T. Kahn, and J. Cutler, "Applying model based systems engineering (MBSE) to a standard cubesat," in Proc. IEEE Aerospace Conference, MT, Mar. 2012. DOI: https://doi.org/10.1109/AERO.2012.6187339
  8. S.C. Spangelo, J. Cluter, L. Anderson, E. Fosse, L. Cheng, R. Yntema, M. Bajaj, C. Delp, B. Cole, G. Soremekum, and D. Kaslow, "Model based systems engineering (MBSE) applied to radio aurora explorer (RAX) cubesat mission operational scenarios," in Proc. Aerospace Conference, MT, Mar. 2013. DOI: https://doi.org/10.1109/AERO.2013.6496894
  9. D. Kaslow, G. Soremekun, H. Kim, and S.C. Spangelo, "Integrated model-based systems engineering (MBSE) applied to the simulation of a cubesat mission," in Proc. Aerospace Conference, MT, Mar. 2014. DOI: https://doi.org/10.1109/AERO.2014.6836317
  10. D. Kaslow, L. Anderson, S. Asundi, B. Ayres, C. Iwata, B. Shiotani, and R. Thompson, "Developing a cubesat model-based system engineering (MBSE) reference model - interim status," in Proc. IEEE Aerospace conference, MT, 2015. DOI: https://doi.org/10.1109/AERO.2015.7118965
  11. D. Kaslow, B. Ayres, M.J. Chonoles, S.D. Gasster, L. Hart, C. Massa, R. Yntema, and B. Shiotani, "Developing a cubesat model-based system engineering (MBSE) reference model - interim status #2," in Proc. IEEE Aerospace conference, MT, 2016. DOI: https://doi.org/10.1109/AERO.2016.7500592
  12. D. Kaslow, B. Ayres, P. Cahill, L. Hart, and R. Yntema, "Developing a cubesat model-based system engineering (MBSE) reference model - interim status #3," in Proc. IEEE Aerospace Conference, MT, Mar. 2017. DOI: https://doi.org/10.1109/AERO.2017.7943691
  13. D. Kaslow, B. Ayres, P. Cahill, C. Croney, L. Hart, and A. Levi, "Developing a cubesat model-based system engineering (MBSE) reference model - interim status #4," in Proc. AIAA Space and Astronautics Forum and Exposition, Orlando, FL, Sep. 2018. DOI: https://doi.org/10.2514/6.2018-5328
  14. D. Kaslow, B. Ayres, P. Cahill, L. Hart, and R. Yntema, "A model-based systems engineering (MBSE) approach for defining the behaviors of cubesats," in Proc. Aerospace Conference, MT, Jun. 2017. DOI: https://doi.org/10.1109/AERO.2017.7943865
  15. N Phojanamongkolkij, K.A. Lee, S.T. Miller, K.A. Vorndran, K.R. Vaden, E.P. Ross, B.C. Powell, and R.W. Moses, "Modeling to Mars NASA model based systems engineering pathfinder effort," in Proc. AIAA Space and Astronautics Forum and Exposition, Orlando, FL, Sep. 2017. DOI: https://doi.org/10.2514/6.2017-5235
  16. E. Parrott, "The value of successful MBSE adoption," in No Magic World Symposium, Allen, TX, May 22, 2016.
  17. F.C. Alvidrez, "Using model based system engineering in flight test," ITEA Journal, vol.33, pp.145-152, Jun. 2012.
  18. Y.M. Kim, J.C, Lee, "On the Use of SysML Models in the Conceptual Design of Unmanned Aerial Vehicles," The Journal of Korean Institute of Communications and Information Sciences, vol.37c, pp.201-216, Feb. 2012.
  19. Y.D. Shin, "Basic System Design and Design Specifications Optimization Using SysML-Based M&S Methods for the National Defense Acquisition System," Thesis (Ph.D.), Ajou Univ. Department of Systems Engineering, Feb. 2017.