DOI QR코드

DOI QR Code

A Blocking Algorithm of a Target Object with Exposed Privacy Information

개인 정보가 노출된 목표 객체의 블로킹 알고리즘

  • 장석우 (안양대학교 소프트웨어학과)
  • Received : 2019.03.21
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.

초고속의 유무선 인터넷은 다양한 형태의 미디어 데이터를 손쉽게 획득할 수 있는 유용한 창구이다. 이에 반해, 일반인들이 개인 정보가 노출된 대상 객체를 포함하고 있는 미디어 데이터까지도 인터넷을 통해 용이하게 획득할 수 있으므로 사회적으로 문제가 되고 있다. 본 논문에서는 입력되는 여러 가지 종류의 영상으로부터 개인 정보가 노출된 대상 객체를 학습 알고리즘을 이용해 강인하게 검출하고, 검출된 대상 객체 영역을 효과적으로 블로킹하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 뉴럴 네크워크 기반의 학습 알고리즘을 사용해 영상으로부터 개인 정보를 포함하고 있는 대상 객체만을 검출한다. 그런 다음, 격자형 모자이크를 생성해 이전 단계에서 검출된 대상 객체 영역 위에 오버랩함으로써 개인 정보를 포함하고 있는 객체 영역을 효과적으로 블로킹한다. 실험 결과에서는 제안된 알고리즘이 입력되는 다양한 영상으로부터 개인 정보가 노출된 대상 영역을 강인하게 검출하고, 검출된 영역을 모자이크 처리를 통해 효과적으로 블로킹한다는 것을 보여준다. 본 논문에서 제시된 객체 블로킹 방법은 객체 보안, 물체 추적, 영상 블로킹 등과 같은 컴퓨터 비전과 관련된 여러 응용 분야에서 유용하게 활용될 것으로 예상된다.

Keywords

SHGSCZ_2019_v20n4_43_f0001.png 이미지

Fig. 1. Overall flow of the suggested algorithm

SHGSCZ_2019_v20n4_43_f0002.png 이미지

Fig. 2. Structure of the suggested CNN model

SHGSCZ_2019_v20n4_43_f0003.png 이미지

Fig. 3. Mean-based mosaic block

SHGSCZ_2019_v20n4_43_f0004.png 이미지

Fig. 4. Mosaic processing

SHGSCZ_2019_v20n4_43_f0005.png 이미지

Fig. 5. Performance comparison

References

  1. A. M. Aladwani, "Compatible Quality of Social Media Content: Conceptualization, Measurement, and Affordances," International Journal of Information Management, vol. 37, no. 6, pp.576-582, Dec. 2017. DOI: https://doi.org/10.1016/j.ijinfomgt.2017.05.014
  2. S. Zhang, P. McCullagh, H. Zheng, and C. Nugent, "Situation Awareness Inferred from Posture Transition and Location: Derived from Smartphone and Smart home Sensors," IEEE Transactions on Human-Machine Systems, Vol. 47, Issue 6, pp.814-821, Apr. 2017. DOI: https://doi.org/10.1109/THMS.2017.2693238
  3. Y.-D. Lee, S. U. Jan, I. Koo, "Application of Navigating System based on Bluetooth Smart", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 1, pp.69-76, Feb. 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.1.69
  4. D. Shim, J.-H. Yang, J. Son, S.-H. Han, H. Lee, "Smart Parking Guidance System based on IoT Car-stoppers", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 3, pp.137-143, June 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.3.137
  5. K. Kim, C. Keum, K.-S. Chung, "An Evaluation of the Suitability of Data Mining Algorithms for Smart-Home Intelligent-Service Platforms", Journal of the Society of Korea Industrial and Systems Engineering, Vol. 40, No. 2, pp.68-77, June 2017. DOI: https://doi.org/10.11627/jkise.2017.40.2.068
  6. W.-H. Chung, Y.-B. Kim, "A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 4, pp.49-59, Aug. 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.4.49
  7. Y.-H. Jang, S.-S. Yang, S.-C. Park, "Design and Implementation of Standby Power Cutoff System for Smart Home Environment Based on Zigbee-MQTT", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 4, pp. 129-135, Aug. 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.4.129
  8. B.-H. Cho, "Design of Autobike Driver's Driving Information and e-call Functions Providing Software using Smart Helmet", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 4, pp. 173-179, Aug. 2017. DOI: https://doi.org/10.7236/JIIBC.2017.17.4.173
  9. K.-S. Jeong, S. Bae, H. Kim, "Evaluation Criteria for Suitable Authentication Method for IoT Service Provider in Industry 4.0 Environment", Journal of the Society of Korea Industrial and Systems Engineering, Vol. 40, No. 3, pp. 116-122, Sep. 2017. DOI: https://doi.org/10.11627/jkise.2017.40.3.116
  10. J. Do, "Media Education Methodology in Smart Media Era", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 18, No. 5, pp. 245-250, Oct. 2018. DOI: https://doi.org/10.7236/JIIBC.2018.18.5.245
  11. R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, "Face Detection in Color Images," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5, pp. 696-706, May 2002. DOI: https://doi.org/10.1109/34.1000242
  12. K.-M. Lee, "Component-based Face Detection and Verification," Pattern Recognition Letters, Vol. 29, pp. 200-214, Feb. 2008. DOI: https://doi.org/10.1016/j.patrec.2007.09.013
  13. S.-W. Jang, Y.-J. Park, G.-Y. Kim, H.-I. Choi, and M.-C. Hong, "An Adult Image Identification System Based on Robust Skin Segmentation," Journal of Imaging Science and Technology, Vol. 55. No. 2, pp. 020508-1-10, Mar. 2011. DOI: https://doi.org/10.2352/J.ImagingSci.Technol.2011.55.2.020508
  14. J. Liu, L. Huang, and J. Lin, "An Image Mosaic Block Detection Method Based on Fuzzy C-Means Clustering," In Proc. of the IEEE International Conference on Computer Research and Development (ICCRD), Vol. 1, pp. 237-240, Mar. 2011. DOI: https://doi.org/10.1109/ICCRD.2011.5764011
  15. R. Dahl, M. Norouzi, and J. Shlens, "Pixel Recursive Super Resolution," In Proc. of the IEEE International Conference on Computer Vision (ICCV), pp. 5449-5458, Oct. 2017. DOI: https://doi.org/10.1109/ICCV.2017.581
  16. D. Triantafyllidou, P. Nousi, and A. Tefas, "Fast Deep Convolutional Face Detection in the Wild Exploiting Hard Sample Mining," Big Data Research, Vol. 11, pp. 65-76, Mar. 2018. DOI: https://doi.org/10.1016/j.bdr.2017.06.002
  17. M. Mahmud, M. S. Kaiser, A. Hussain, and S Vassanelli, "Applications of Deep Learning and Reinforcement Learning to Biological Data," IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 6, pp. 2063-2079, Jan. 2018. DOI: https://doi.org/10.1109/TNNLS.2018.2790388
  18. G. G. Chrysos, E Antonakos, P. Snape, A. Asthana,and S. Zafeiriou, "A Comprehensive Performance Evaluation of Deformable Face Tracking In-the-Wild," International Journal of Computer Vision, Vol. 126, No. 2-4, pp 198-232, Apr. 2018. DOI: https://doi.org/10.1007/s11263-017-0999-5
  19. S.-F. Sun, S.-H. Han, G. Wang, Y.-C. Xu, and B.-J. Lei, "Mosaic Defect Detection in Digital Video," In Proc. of the IEEE Chinese Conference on Pattern Recognition (CCPR), pp. 1-5, October 2010. DOI: https://doi.org/10.1109/CCPR.2010.5659234