DOI QR코드

DOI QR Code

Gamma radiation attenuation properties of tellurite glasses: A comparative study

  • Al-Hadeethi, Y. (Department of Physics, Faculty of Science, King Abdulaziz University) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, University of Tabuk) ;
  • Tijani, S.A. (Department of Physics, Faculty of Science, King Abdulaziz University)
  • Received : 2019.05.06
  • Accepted : 2019.06.13
  • Published : 2019.12.25

Abstract

This work investigated the radiation attenuation characteristics of three series of tellurite glass systems with the following compositions: 30PbO-10ZnO-xTeO2-(60-x)B2O3 where x = 10, 30, 40, 50 and 60 mol%, xBaO-xB2O3-(100-2x)TeO2 with x = 15-40 mol% and 50ZnO-(50-x)P2O5-xTeO2, where x = 0, 10, .40 mol%. The results revealed that the attenuation parameters in all the samples decrease with increase in the energy, which implied that all the samples have better interaction with gamma photons at low energies and thus higher photon attenuating efficiency. From the three systems, the samples coded as PbZnBTe60, BaBTe70 and ZnPTe40 have the lowest half value layer values and accordingly have superior photon attenuation efficacy. The maximum effective atomic number values were found for energy less than 0.1 MeV particularly near the K-edges absorption of the heavy atomic number elements such as Te, Ba and Pb. At the lowest energy, the Zeff values are found in the range of 62.33-66.25, 49.43-50.81 and 24.99-35.83 for series 1-3 respectively. Also, we found that the density of the glass remarkably affects the photon attenuation ability of the selected glasses. The mean free path results showed that the PbO-ZnO-TeO2-B2O3 glass system has better radiation shielding efficiency than the glass samples in series 2 and 3.

Keywords

References

  1. Ashok Kumar, Gamma ray shielding properties of $PbO-Li_2O-B_2O_3$ glasses, Radiat. Phys. Chem. 136 (2017) 50-53. https://doi.org/10.1016/j.radphyschem.2017.03.023
  2. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, Kawa M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Composites Part B 165 (2019) 636-647. https://doi.org/10.1016/j.compositesb.2019.02.022
  3. Erdem Sakar, Ugur Akbaba, Eugeniusz Zukowski, Gurol Ali, Gamma and neutron radiation effect on Compton profile of the multi-walled carbon nanotubes, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 437 (2018) 20-26. https://doi.org/10.1016/j.nimb.2018.10.027
  4. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid (2018) 1-15.
  5. P.M. Williams, S. Fletcher, Health effects of prenatal radiation exposure-American family physician, Am. Fam. Physician (2010). http://www.aafp.org/afp/2010/0901/p488.html#sec-2.
  6. Erdem Sakar, Mehmet Buyukyildiz, Bunyamin Alim, Betul Ceviz Sakar, Murat Kurudirek, Leaded brass alloys for gamma-ray shielding applications, Radiat. Phys. Chem. 159 (2019) 64-69. https://doi.org/10.1016/j.radphyschem.2019.02.042
  7. F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nuclear Eng. Technol. 50 (2018) 944-949. https://doi.org/10.1016/j.net.2018.05.007
  8. F. Akman, R. Durak, M.F. Turhan, M.R. Kacal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, Appl. Radiat. Isot. 101 (2015) 107-113. https://doi.org/10.1016/j.apradiso.2015.04.001
  9. Nimitha S. Prabhu, Vinod Hegde, M.I. Sayyed, E. Sakar, Sudha D. Kamath, Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system, Infrared Phys. Technol. 98 (2019) 7-15. https://doi.org/10.1016/j.infrared.2019.02.005
  10. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, Shamsan S. Obaid, Z.Y. Khattari, U.P. Gawai, Feras Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503-504 (2019) 158-168. https://doi.org/10.1016/j.jnoncrysol.2018.09.038
  11. S. Dai, J. Wu, J. Zhang, G. Wang, Z. Jiang, The spectroscopic properties of Er3+-doped $TeO_2-Nb_2O_5$ glasses with high mechanical strength performance, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62 (2005) 431-437. https://doi.org/10.1016/j.saa.2005.01.011
  12. N.S. Tagiara, D. Palles, E.D. Simandiras, V. Psycharis, A. Kyritsis, E.I. Kamitsos, Synthesis, thermal and structural properties of pure TeO2 glass and zinctellurite glasses, J. Non-Cryst. Solids 457 (2017) 116-125. https://doi.org/10.1016/j.jnoncrysol.2016.11.033
  13. Amandeep Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for $TeO_2-WO_3-GeO_2$ glasses using FLUKA code, Results in Physics 13 (2019) 102199. https://doi.org/10.1016/j.rinp.2019.102199
  14. O. Agar, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, H.O. Tekin, M.I. Sayyed, T.T. Erguzel, Nevzat Tarhan, $Er_2O_3$ effects on photon and neutron shielding properties of $TeO_2-Li_2O-ZnONb_2O_5$ glass system, Results in Physics 13 (2019) 102277. https://doi.org/10.1016/j.rinp.2019.102277
  15. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of $Bi_2O_3$ on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloy. Comp. 745 (2018) 355-364. https://doi.org/10.1016/j.jallcom.2018.02.158
  16. Murat Kurudirek, Yuksel Ozdemir, Onder Simsek, Ridvan Durak, Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: a comparative study, J. Nucl. Mater. 407 (2010) 110-115. https://doi.org/10.1016/j.jnucmat.2010.10.007
  17. Mridula Dogra, K.J. Singh, Kulwinder Kaur, Vikas Anand, Parminder Kaur, Prabhjot Singh, B.S. Bajwa, Investigation of gamma ray shielding, structural and dissolution rate properties of $Bi_2O_3-BaO-B_2O_3-Na_2O$ glass system, Radiat. Phys. Chem. 144 (2018) 171-179. https://doi.org/10.1016/j.radphyschem.2017.08.008
  18. Ashok Kumar, M.I. Sayyed, Mengge Dong, Xiangxin Xue, Effect of PbO on the shielding behavior of $ZnO-P_2O_5$ glass system using Monte Carlo simulation, J. Non-Cryst. Solids 481 (2018) 604-607. https://doi.org/10.1016/j.jnoncrysol.2017.12.001
  19. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect $Bi_2O_3$ on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses, J. Non-Cryst. Solids 499 (2018) 75-85. https://doi.org/10.1016/j.jnoncrysol.2018.07.025
  20. Marltan Wilson, Optimization of the radiation shielding capabilities of bismuth-borate glasses using the genetic algorithm, Mater. Chem. Phys. 224 (2019) 238-245. https://doi.org/10.1016/j.matchemphys.2018.12.022
  21. M.I. Sayyed, Kawa M. Kaky, Erdem Sakar, Ugur Akbaba, Malaa M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses, J. Non-Cryst. Solids 512 (2019) 33-40. https://doi.org/10.1016/j.jnoncrysol.2019.02.014
  22. A.E. Ersundu, M. Buyukyildiz, M. Celikbilek Ersundu, E. Sakar, M. Kurudirek, The heavy metal oxide glasses within the $WO_3-MoO_3-TeO_2$ system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy 104 (2018) 280-287. https://doi.org/10.1016/j.pnucene.2017.10.008
  23. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of borotellurite glass, J. Non-Cryst. Solids 512 (2019) 140-147. https://doi.org/10.1016/j.jnoncrysol.2019.03.004
  24. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions, J. Alloy. Comp. 695 (2017) 3191-3197. https://doi.org/10.1016/j.jallcom.2016.11.318
  25. Huseyin Ozan Tekin, M.I. Sayyed, Tugba Manici, Elif Ebru Altunsoy, Photon shielding characterizations of bismuth modified borate esilicateetellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys. 211 (2018) 9-16. https://doi.org/10.1016/j.matchemphys.2018.02.009
  26. D.K. Gaikwad, Shamsan S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, Ashok Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of $WO_3-TeO_2-PbO$ glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517. https://doi.org/10.1016/j.matchemphys.2018.04.019
  27. M.I. Sayyed, Saleem I. Qashou, Z.Y. Khattari, Radiation shielding competence of newly developed $TeO_2-WO_3$ glasses, J. Alloy. Comp. 696 (2017) 632-638. https://doi.org/10.1016/j.jallcom.2016.11.160
  28. P. Vani, G. Vinitha, M.I. Sayyed, B.O. Elbashir, N. Manikandan, Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses, J. Non-Cryst. Solids 511 (2019) 194-200. https://doi.org/10.1016/j.jnoncrysol.2019.02.005
  29. Helena Ticha, Jiri Schwarz, Ladislav Tichy, The structural arrangement and the optical band gap in certain Quaternary $PbO-ZnO-TeO_2-B_2O_3$ glasses, J. Non-Cryst. Solids 489 (2018) 40-44. https://doi.org/10.1016/j.jnoncrysol.2018.03.029
  30. Y.J. Cha, J.H. Kim, J.-H. Yoon, B.S. Lee, S. Choi, K.S. Hong, E.D. Jeong, T. Komatsu, H.G. Kim, Synthesis, electronic polarizability and ${\beta}-BaB_2O_4$ crystallization in $BaO-B_2O_3-TeO_2$ glasses, J. Non-Cryst. Solids 429 (2015) 143-147. https://doi.org/10.1016/j.jnoncrysol.2015.09.010
  31. Petr Mosner, Katerina Vosejpkova, Ladislav Koudelka, Lionel Montagne, Revel Bertrand, Structure and properties of glasses in $ZnO-P_2O_5-TeO_2$ system, J. Non-Cryst. Solids 357 (2011) 2648-2652. https://doi.org/10.1016/j.jnoncrysol.2010.12.052
  32. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys, Nuclear Eng. Technol. 51 (2019) 853-859. https://doi.org/10.1016/j.net.2018.12.014
  33. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXComda program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654. https://doi.org/10.1016/j.radphyschem.2004.04.040
  34. L. Shamshad, G. Rooh, P. Limkitjaroenporn, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, J. Kaewkhao, A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials, Prog. Nucl. Energy 97 (2017) 53-59. https://doi.org/10.1016/j.pnucene.2016.12.014
  35. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO, Radiat. Phys. Chem. 151 (2018) 239-252. https://doi.org/10.1016/j.radphyschem.2018.06.035
  36. Parminder Kaur, K.J. Singh, Sonika Thakur, Prabhjot Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (2019) 367-377. https://doi.org/10.1016/j.saa.2018.08.038
  37. P. Fuochi, U. Corda, M. Lavalle, A. Kovacs, M. Baranyai, A. Mejri, K. arah, Dosimetric properties of gamma and electron-irradiated commercial window glasses, Nukleonika 54 (2009) 39-43.
  38. R. Bagheri, A.K. Moghaddam, S.P. Shirmardi, B. Azadbakht, M. Salehi, Determination of gamma-ray shielding properties for silicate glasses containing $Bi_2O_3$, PbO, and BaO, J. Non-Cryst. Solids 479 (2018) 62-71. https://doi.org/10.1016/j.jnoncrysol.2017.10.006
  39. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloy. Comp. 782 (2019) 315-322. https://doi.org/10.1016/j.jallcom.2018.12.221
  40. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
  41. B. Speit, Radiation-shielding Glasses Providing Safety against Electrical Discharge and Being Resistant to Discoloration, 1991 (Google Patents).

Cited by

  1. A Different Method to Determine the Gamma-ray Linear Attenuation Coefficient vol.64, pp.2, 2019, https://doi.org/10.1134/s0020441221010097
  2. Influence of PbO content on the gamma ray shielding properties of lead boro-telluro-phosphate glasses vol.185, 2019, https://doi.org/10.1016/j.radphyschem.2021.109516