DOI QR코드

DOI QR Code

200 MeV Ag15+ ion beam irradiation induced modifications in spray deposited MoO3 thin films by fluence variation

  • Rathika, R. (Department of Physics, TBML College) ;
  • Kovendhan, M. (Department of Environmental Engineering, Inha University) ;
  • Joseph, D. Paul (Department of Physics, National Institute of Technology) ;
  • Vijayarangamuthu, K. (Center for Nanoscience and Technology, Pondicherry University) ;
  • Kumar, A. Sendil (Department of Physics, KL Education Foundation) ;
  • Venkateswaran, C. (Department of Nuclear Physics, University of Madras, Guindy Campus) ;
  • Asokan, K. (Inter University Accelerator Centre) ;
  • Jeyakumar, S. Johnson (Department of Physics, TBML College)
  • Received : 2019.02.10
  • Accepted : 2019.06.03
  • Published : 2019.12.25

Abstract

Spray deposited Molybdenum trioxide (MoO3) thin film of thickness nearly 379 nm were irradiated with 200 MeV Ag15+ ion beam at different fluences (Ø) of 5 ×1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/㎠. The X-ray diffraction (XRD) pattern of the pristine film confirms orthorhombic structure and the crystallinity decreased after irradiation with the fluence of 5 × 1011 ions/㎠ due to irradiation induced defects and became amorphous at higher fluence. In pristine film, Raman modes at 665, 820, 996 cm-1 belong to Mo-O stretching, 286 cm-1 belong to Mo-O bending mode and those below 200 cm-1 are associated with lattice modes. Raman peak intensities decreased upon irradiation and vanished completely for the ion fluence of 5 ×1012 ions/㎠. The percentage of optical transmittance of pristine film was nearly 40%, while for irradiated films it decreased significantly. Red shift was observed for both the direct and indirect band gaps. The pristine film surface had densely packed rod like structures with relatively less porosity. Surface roughness decreased significantly after irradiation. The electrical transport properties were also studied for both the pristine and irradiated films by Hall effect. The results are discussed.

Keywords

References

  1. L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu, B. Hu, Y. Luo, H. Liu, Mater. Today 14 (2011) 346-353. https://doi.org/10.1016/S1369-7021(11)70165-1
  2. A.L. Pergament, V.P. Malinenko, L.A. Aleshina, E.L. Kazakova, N.A. Kuldin, J. Exp. Phys. 2014 (2014), 951297, 1-6.
  3. S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran, Sensor. Actuator. B 101 (2004) 161-174. https://doi.org/10.1016/j.snb.2004.02.048
  4. B.S. Lee, Y. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S. Zhang, A.C. Dillon, Adv. Mater. 20 (2008) 3627-3632. https://doi.org/10.1002/adma.200800999
  5. S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Int. J. Electrochem. Sci. 3 (2008) 953-960.
  6. G.K. Suryaman, M.W. Wildan, S. Supardjo, Y.D. Agus Susanto, Urania J. Ilm, Daur Bahan Bakar Nukl 24 (2019) 135-142.
  7. B. Cheng, Y.J. Kim, P. Chou, Nucl. Eng. Technol. 48 (2016) 16-25. https://doi.org/10.1016/j.net.2015.12.003
  8. V. Nirupama, M. Chandra Sekhar, T.K. Subramanyam, S. Uthanna, J. Phys. Conf. Ser. 208 (2010) (012101)1-(012101)6.
  9. P.F. Carcia, E.M. McCarron, Thin Solid Films 155 (1987) 53-63. https://doi.org/10.1016/0040-6090(87)90452-4
  10. R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Curr. Appl. Phys. 7 (2007) 51-59. https://doi.org/10.1016/j.cap.2005.10.001
  11. M. Dhanasankar, K.K. Purushothaman, G. Muralidharan, Appl. Surf. Sci. 257 (2011) 2074-2079. https://doi.org/10.1016/j.apsusc.2010.09.052
  12. S.D. Gothe, A.A. Wali, D.S. Sutrave, Int. J. Eng. Res. Afr. 6 (2016) 26-32.
  13. A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Mater. Sci. Eng. B 97 (2003) 5-8. https://doi.org/10.1016/S0921-5107(02)00385-9
  14. N. Chaturvedi, S.K. Swami, V. Dutta, Sol. Energy 137 (2016) 379-384. https://doi.org/10.1016/j.solener.2016.08.038
  15. B. Kannan, R. Pandeeswari, B.G. Jeyaprakash, Ceram. Int. 40 (2014) 5817-5823. https://doi.org/10.1016/j.ceramint.2013.11.022
  16. C. Chang, J. Luo, T. Chen, K. Yeh, T. Huang, C. Hsu, W. Chao, C. Ke, P. Hsu, M. Wang, M. Wu, Thin Solid Films 519 (2010) 1552-1557. https://doi.org/10.1016/j.tsf.2010.09.003
  17. J.M. Camacho, A.I. Oliva, Thin Solid Films 515 (2006) 1881-1885. https://doi.org/10.1016/j.tsf.2006.07.024
  18. M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sensor. Actuator. B 145 (2010) 13-19. https://doi.org/10.1016/j.snb.2009.11.007
  19. T.S. Sian, G.B. Reddy, J. Appl. Phys. 98 (2005) 98-101.
  20. S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, J. Solid State Electrochem. 21 (2017) 2737-2746. https://doi.org/10.1007/s10008-017-3540-4
  21. R.S. Patil, M.D. Uplane, P.S. Patil, Int. J. Electrochem. Sci. 3 (2008) 259-265.
  22. I.P. Jain, G. Agarwal, Surf. Sci. Rep. 66 (2011) 77-172. https://doi.org/10.1016/j.surfrep.2010.11.001
  23. R. Rathika, M. Kovendhan, D.P. Joseph, A.S. Kumar, K. Vijayarangamuthu, C. Venkateswaran, K. Asokan, S. Johnson Jeyakumar, Nucl. Instrum. Methods Phys. Res. B 439 (2019) 51-58. https://doi.org/10.1016/j.nimb.2018.10.036
  24. R. Sivakumar, R. Sanjeeviraja, C. Jayachandran, M. Gopalakrishnan, S.N. Sarangi, D. Paramanik, T. Som, J. Appl. Phys. 101 (2007), 034913 (1-5). https://doi.org/10.1063/1.2437656
  25. P. Mallick, C. Rath, J. Prakash, D.K. Mishra, R.J. Choudhary, D.M. Phase, A. Tripathi, D.K. Avasthi, D. Kanjilal, N.C. Mishra, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1613-1617. https://doi.org/10.1016/j.nimb.2010.02.005
  26. Y. Zhang, M.P.K. Sahoo, J. Wang, 19 (2017) 7032-7039.
  27. P. Sudhagar, K. Asokan, J.H. Jung, Y. Lee, S. Park, Y.S. Kang, 6 (2011) 1-7.
  28. M. Kovendhan, D.P. Joseph, E.S. Kumar, A. Sendilkumar, P. Manimuthu, S. Sambasivam, C. Venkateswaran, R. Mohan, Appl. Surf. Sci. 257 (2011) 8127-8133. https://doi.org/10.1016/j.apsusc.2011.04.122
  29. E. Bauer, Z. Kristallogr. 110 (1958) 372-394. https://doi.org/10.1524/zkri.1958.110.1-6.372
  30. J.A. Venables, Introduction to Surface and Thin Film Processes, first ed., CAMBRIDGE UNIVERSITY PRESS, New York, 2003.
  31. www.srim.org.
  32. M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Sambasivam, S.N. Karthick, K. Vijayarangamuthu, A. Sendilkuma, K. Asokan, H.J. Kim, B.C. Choi, C. Venkateswaran, R. Mohan, Appl. Surf. Sci. 284 (2013) 624-633. https://doi.org/10.1016/j.apsusc.2013.07.143
  33. L. Boudaoud, N. Benramdane, R. Desfeux, B. Khelifa, C. Mathieu, Catal. Today 113 (2006) 230-234. https://doi.org/10.1016/j.cattod.2005.11.072
  34. M. Kovendhan, D. Paul Joseph, P. Manimuthu, A. Sendilkumar, S.N. Karthick, S. Sambasivam, K. Vijayarangamuthu, Hee Je Kim, Byung Chun Choi, K. Asokan, C. Venkateswaran, R. Mohan, Curr. Appl. Phys. 15 (2015) 622-631. https://doi.org/10.1016/j.cap.2015.02.022
  35. A. Solanki, J. Shrivastava, S. Upadhyay, V. Sharma, P. Sharma, P. Kumar, P. Kumar, K. Gaskell, V.R. Satsangi, R. Shrivastav, S. Dass, Int. J. Hydrogen Energy 36 (2011) 5236-5245. https://doi.org/10.1016/j.ijhydene.2011.01.149
  36. L. Balakrishnan, S.G. Raj, S. Meher, K. Asokan, Z. Alex, Appl. Phys. A 119 (2015) 1541-1553. https://doi.org/10.1007/s00339-015-9136-x
  37. F.A. Mir, K.M. Batoo, Appl. Phys. A 122 (1-7) (2016) 418. https://doi.org/10.1007/s00339-016-9948-3
  38. R. Butte, L. Lahourcade, T.K. Uzdavinys, G. Callsen, M. Mensi, M. Glauser, G. Rossbach, D. Martin, J. Carlin, S. Marcinkevicius, N. Grandjean, M. Mensi, M. Glauser, G. Rossbach, D. Martin, Appl. Phys. Lett. 112 (2018) (032106)1-(032106)5. https://doi.org/10.1063/1.5010879
  39. M. Beauvy, C. Dalmasso, C. Thiriet-dodane 242 (2006) 557-561.
  40. Y.S. Chaudhary, S.A. Khan, R. Shrivastav, V.R. Satsangi, S. Prakash, U.K. Tiwari, D.K. Avasthi, N. Goswami, S. Dass, Thin Solid Films 492 (2005) 332-336. https://doi.org/10.1016/j.tsf.2005.06.036
  41. P. Kumar, P. Sharma, A. Solanki, A. Tripathi, D. Deva, R. Shrivastav, S. Dass, V.R. Satsangi, Int. J. Hydrogen Energy 37 (2012) 3626-3632. https://doi.org/10.1016/j.ijhydene.2011.05.041
  42. P. Sharma, R. Singhal, R. Vishnoi, R. Kaushik, M.K. Banerjee, D.K. Avasthi, V. Ganesan, Vaccum 123 (2016) 35-41. https://doi.org/10.1016/j.vacuum.2015.10.006
  43. N. Bajwa, A. Ingale, D.K. Avasthi, R. Kumar, A. Tripathi, K. Dharamvir, V.K. Jindal, J. Appl. Phys. 104 (2008) 1-13, 054306. https://doi.org/10.1063/1.2968340
  44. M. Rao, K. Ravindranadh, A. Kasturi, M. Shekhawat, Res. J. Recent Sci. 2 (2013) 67-73.
  45. D. Carlos, V. Lavayen, C.O. Dwyer, J. Solid State Chem. 183 (2010) 1595-1603. https://doi.org/10.1016/j.jssc.2010.05.006
  46. A. Klinbumrung, T. Thongtem, S. Thongtem, J. Nanomater. 40 (2012) 1-5.
  47. G. Nazri, C. Julien, Solid State Ionics 56 (1992) 376-382.
  48. O. Lupan, V. Trofim, V. Cretu, I. Stamov, N.N. Syrbu, I. Tiginyanu, Y.K. Mishra, R. Adelung, J. Phys. D Appl. Phys. 47 (2014).
  49. S.K.S. Patel, K. Dewangan, S.K. Srivastav, N.K. Verma, P. Jena, A.K. Singh, N.S. Gajbhiye, Adv. Mater. Lett. 9 (2018) 585-589. https://doi.org/10.5185/amlett.2018.2022
  50. A. Guru Sampath Kumar, T. Sofi Sarmash, L. Obulapathi, D. Jhansi Rani, T. Subba Rao, K. Asokan, Thin Solid Films 605 (2016) 102-107. https://doi.org/10.1016/j.tsf.2015.12.024
  51. R. Kumaravel, K. Ramamurthi, I. Sulania, K. Asokan, D. Kanjilal, D.K. Avasti, P.K. Kulria, Radiat. Phys. Chem. 80 (2011) 435-439. https://doi.org/10.1016/j.radphyschem.2010.09.013
  52. V. Naundorf, Int. J. Mod. Phys. B 6 (1992) 2925-2986. https://doi.org/10.1142/S0217979292002310
  53. A. Axelevitch, B. Gorenstein, G. Golan, Phys. Procedia 32 (2012) 1-13. https://doi.org/10.1016/j.phpro.2012.03.510
  54. Y.S. Chaudhary, S.A. Khan, R. Shrivastav, Nucl. Instrum. Methods Phys. Res. B 225 (2004) 291-296. https://doi.org/10.1016/j.nimb.2004.04.165
  55. H. Thakur, S. Gautam, P. Thakur, K.K. Sharma, A.P. Singh, Y. Kumar, R. Kumar, K.H. Chae, J. Korean Phys. Soc. 61 (2011) 1609-1614. https://doi.org/10.3938/jkps.61.1609
  56. D. Allan Bromley, Treatise on Heavy-Ion Science, Springer Berlin Heidelberg, Newyork, 1985.
  57. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, Nucl. Instrum. Methods Phys. Res. B 254 (2007) 236-242. https://doi.org/10.1016/j.nimb.2006.11.041
  58. H. Demiryont, J.R. Sites, K. Geib, Appl. Opt. 24 (2000) 490-495. https://doi.org/10.1364/AO.24.000490
  59. M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Ganesan, S. Sambasivam, P. Maruthamuthu, S.A. Suthanthiraraj, C. Venkateswaran, R. Mohan, Trans. Indian Inst. Met. 64 (2011) 185-188. https://doi.org/10.1007/s12666-011-0036-2
  60. V. Gokulakrishnan, S. Parthiban, E. Elangovan, K. Jeganathan, D. Kanjilal, K. Asokan, R. Martins, E. Fortunato, K. Ramamurthi, Radiat. Phys. Chem. 81 (2012) 589-593. https://doi.org/10.1016/j.radphyschem.2012.02.037
  61. P. Sharma, M. Vashistha, I.P. Jain, Opt. Mater. 27 (2004) 395-398. https://doi.org/10.1016/j.optmat.2004.09.006
  62. M.S. Kamboj, G. Kaur, R. Thangaraj, D. Avasthi, J. Phys. D Appl. Phys. 35 (2002) 477-479. https://doi.org/10.1088/0022-3727/35/5/310
  63. S. Rani, N.K. Puri, S.C. Roy, M.C. Bhatnagar, D. Kanjilal, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 1987-1992. https://doi.org/10.1016/j.nimb.2008.02.062
  64. N. Desai, V. Kondalkar, R. Mane, C. Hong, P. Bhosale, J. Nanomed. Nanotechnol. 6 (338) (2015) 1-7.
  65. X.W. Lou, H.C. Zeng, Chem. Mater. 14 (2002) 4781-4789. https://doi.org/10.1021/cm0206237
  66. S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, C. Chiun, Sensor. Actuator. B 174 (2012) 51-58. https://doi.org/10.1016/j.snb.2012.08.015
  67. H.S. Zhang, J.L. Endrino, A. Anders, Appl. Surf. Sci. 255 (2008) 2551-2556. https://doi.org/10.1016/j.apsusc.2008.07.193
  68. D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Optoelectron. Adv. Mater. - RAPID Commun. 3 (2009) 737-743.
  69. S.G. Mayr, R.S. Averback, Phys. Rev. Lett. 87 (1-4) (2001) 196106. https://doi.org/10.1103/PhysRevLett.87.196106
  70. A.E. Volkov, Nucl. Instrum. Methods Phys. Res. B 193 (2016) 381-390. https://doi.org/10.1016/S0168-583X(02)00809-1
  71. H. Thomas, S. Thomas, R. V Ramanujan, D.K. Avasthi, I.A.A. Omari, S. Al-harthi, M.R. Anantharaman, Nucl. Instrum. Methods Phys. Res. B 287 (2012) 85-90. https://doi.org/10.1016/j.nimb.2012.05.039
  72. S. Hemon, F. Gourbilleau, E. Paumier, E. Dooryhee, Nucl. Instrum. Methods Phys. Res. B 122 (1997) 526-529. https://doi.org/10.1016/S0168-583X(96)00580-0
  73. A. Berthelot, S. Hemon, F. Gourbilleau, C. Dufour, B. Domenges, Philos. Mag. A 80 (2009) 2257-2281. https://doi.org/10.1080/014186100440434
  74. D. Choi, Microelectron. Eng. 122 (2014) 5-8. https://doi.org/10.1016/j.mee.2014.03.012
  75. T. Sun, B. Yao, A.P. Warren, K. Barmak, M.F. Toney, R.E. Peale, K.R. Coffey, Phys. Rev. B 81 (2010) 1-12.
  76. A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1 (4) (1970) 1382-1389. https://doi.org/10.1103/PhysRevB.1.1382
  77. P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, J. Appl. Phys. 97 (2005) (013509)1-(013509)6. https://doi.org/10.1063/1.1823574
  78. M. Vasilopoulou, D.G. Georgiadou, L.C. Palilis, P. Argitis, S. Kennou, L. Sygellou, N. Konofaos, A. Iliadis, I. Kostis, G. Papadimitropoulos, D. Davazoglou, Microelectron. Eng. 90 (2012) 59-61. https://doi.org/10.1016/j.mee.2011.05.017
  79. P.C. Srivastava, V. Ganesan, O.P. Sinha, Nucl. Instrum. Methods Phys. Res. B 222 (2004) 491-496. https://doi.org/10.1016/j.nimb.2004.03.067
  80. S. Kumar, A.K. Mahapatro, P. Mishra, Appl. Surf. Sci. 462 (2018) 815-821. https://doi.org/10.1016/j.apsusc.2018.08.064

Cited by

  1. Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation vol.52, pp.11, 2019, https://doi.org/10.1016/j.net.2020.04.013
  2. The impact of fluence dependent 120 MeV Ag swift heavy ion irradiation on the changes in structural, electronic, and optical properties of AgInSe2 nano-crystalline thin films for optoelectr vol.11, pp.42, 2019, https://doi.org/10.1039/d1ra03409j
  3. Defects engineering and enhancement in optical and structural properties of 2D-MoS2 thin films by high energy ion beam irradiation vol.276, 2019, https://doi.org/10.1016/j.matchemphys.2021.125422
  4. Effects of 7 MeV proton irradiation on microstructural, morphological, optical, and electrical properties of fluorine-doped tin oxide thin films vol.28, 2019, https://doi.org/10.1016/j.surfin.2021.101693