References
- F.J. Beltran, F.J. Rivas, R. Montero-de-Espinosa, Iron type catalysts for the ozonation of oxalic acid in water, Water Res. 39 (15) (2005) 3553-3564. https://doi.org/10.1016/j.watres.2005.06.018
- M. Dukkanci, G. Gunduz, Ultrasonic degradation of oxalic acid in aqueous solutions, Ultrason. Sonochem. 13 (6) (2006) 517-522. https://doi.org/10.1016/j.ultsonch.2005.10.005
- Y.H. Huang, Y.J. Shih, C.H. Liu, Oxalic acid mineralization by electrochemical oxidation processes, J. Hazard Mater. 188 (1-3) (2011) 188-192. https://doi.org/10.1016/j.jhazmat.2011.01.091
-
M.M. Kosanic, Photocatalytic degradation of oxalic acid over
$TiO_2$ power, J. Photochem. Photobiol. A Chem. 119 (2) (1998) 119-122. https://doi.org/10.1016/S1010-6030(98)00407-9 - T. Zhang, Modeling Photolytic Advanced Oxidation Processes for the Removal of Trace Organic Contaminants, PhD Thesis, department of chemical and environmental engineering, Arizona University, 2017, pp. 2-33.
- C. Lee, J. Yoon, Determination of quantum yields for the photolysis of Fe (III)-hydroxo complexes in aqueous solution using a novel kinetic method, Chemosphere 57 (10) (2004) 1449-1458. https://doi.org/10.1016/j.chemosphere.2004.07.052
- J.A. Zazo, et al., Chemical pathway and kinetics of phenol oxidation by Fenton's reagent, Environ. Sci. Technol. 39 (23) (2005) 9295-9302. https://doi.org/10.1021/es050452h
- L.A. Perez-Estrada, et al., Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway, Environ. Sci. Technol. 39 (21) (2005) 8300-8306. https://doi.org/10.1021/es050794n
- Q. Natalia, et al., Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes, Catal. Today 101 (2005) 253-260. https://doi.org/10.1016/j.cattod.2005.03.002
- M. Nagase, et al., Low corrosive chemical decontamination method using pH control, (I) basic system, J. Nucl. Sci. Technol. 38 (12) (2001) 1090-1096. https://doi.org/10.3327/jnst.38.1090
- D.I. Metelitsa, Mechanisms of the hydroxylation of aromatic compounds, Russ. Chem. Rev. 40 (7) (1971) 563-580. https://doi.org/10.1070/RC1971v040n07ABEH001939
- F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. Roy. Soc. Lond. A 147 (861) (1934) 332-351. https://doi.org/10.1098/rspa.1934.0221
- E. Brillas, I. Sires, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev. 109 (12) (2009) 6570-6631. https://doi.org/10.1021/cr900136g
- P. Vrushali, G. Sagar, An overview of the Fenton process for industrial waste water, J. Mech. Civil Eng. (2016) 127-136.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications, A review, Critical Reviews Environ. Sci. Technol. 44 (23) (2014) 2577-2641. https://doi.org/10.1080/10643389.2013.829765
- Machulek Jr., et al., Fundamental Mechanistic Studies of the Photo-Fenton Reaction for the Degradation of Organic Pollutants, Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update, 2012.
- S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, M.J. Kim, Dissolution of iron oxide using oxalic acid, Hydrometallurgy 87 (3-4) (2007) 91-99. https://doi.org/10.1016/j.hydromet.2007.02.005
-
N.H. Ince, D.T. Gonenc, Treatability of a textile azo dye by UV/
$H_2O_2$ , Environ. Technol. 18 (2) (1997) 179-185. https://doi.org/10.1080/09593331808616525
Cited by
- Electrolytic and ozone aided destruction of oxalate ions in plutonium oxalate supernatant of the PUREX process: A comparative study vol.328, pp.3, 2019, https://doi.org/10.1007/s10967-021-07714-y
- Toxicity reduction of persistent pollutants through the photo-fenton process and radiation/H2O2 using different sources of radiation and neutral pH vol.289, 2021, https://doi.org/10.1016/j.jenvman.2021.112500
- Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite vol.84, pp.3, 2021, https://doi.org/10.2166/wst.2021.265
- A sustainable method for germanium, vanadium and lithium extraction from coal fly ash: Sodium salts roasting and organic acids leaching vol.312, 2019, https://doi.org/10.1016/j.fuel.2021.122844