DOI QR코드

DOI QR Code

In vitro plantlets regeneration by multi-shoots induction and rooting in Chamaecyparis obtusa

편백의 다신초 유도 및 발근을 통한 식물체 재분화

  • Kim, Ji Ah (Division of Forest Biotechnology, National Institute of Forest Science) ;
  • Lee, Na-Nyum (Division of Forest Biotechnology, National Institute of Forest Science) ;
  • Kim, Yong Wook (Division of Forest Biotechnology, National Institute of Forest Science)
  • 김지아 (국립산림과학원 산림생명공학연구과) ;
  • 이나념 (국립산림과학원 산림생명공학연구과) ;
  • 김용욱 (국립산림과학원 산림생명공학연구과)
  • Received : 2019.11.11
  • Accepted : 2019.11.26
  • Published : 2019.12.31

Abstract

A protocol for the in vitro propagation of Chamaecyparis obtusa was established in the present study. Multi-shoots were initiated from apical shoot explants from germinants after 10 weeks of culture on Litvay medium (LM) supplemented with different concentrations of cytokinin. The effects of pre-treatment with high concentrations of cytokinin and varying concentrations (0.2 to 5.0 mg/L) of zeatin on in vitro shoot elongation and shoot multiplication were investigated. Optimal shoot growth was achieved on LM medium, with over 10-mm shoots after 10 weeks of culture. In the anti-browning tests, ethanesulfonic acid triggered the least browning in the shoot tips. The highest multi-shoot induction was observed in the 0.5-mg/L zeatin treatments, which yielded 80% induction of shoots after 10 weeks of culture, and maximum shoot elongation was observed in the LM basal medium without the hormone. The highest rooting rates were 65% under 0.2 mg/L indole-3-butyric acid.

본 연구에서는 편백의 다신초 유도를 통한 기내 식물체 재분화기술을 개발하고자 본 연구를 수행하였다. 이를 위해 먼저 다신초 유도를 위한 적정 싸이토키닌의 종류 및 농도별 처리에서 1/2LM배지에 0.2 mg/L zeatin의 처리구에서 가장 높은 73%였으며, 절편체 당 평균 3.9개 다신초가 유도되었다. 그리고 싸이토키닌의 고농도→저농도의 순차적 처리의 경우 5.0 mg/L→0.5 mg/L zeatin 처리구에서 100%의 신초 유도율과 절편체 당 17.1개의 가장 많은 다신초가 유도되어 다신초 유도를 위한 최적 조건으로 확인되었다. 신초의 길이신장을 위한 배지는 LM배지에서 배양할 경우 2.62 cm로 가장 좋은 길이생장의 결과를 얻었다. 신초정단부의 갈변화 현상을 억제하기 위해 항산화제 처리 결과 0.5% MES처리구에서 37.5%의 갈변화증상만이 보여 무처구에 비해 2.5배 이상 갈변화 억제 효과가 있었으며, 그에 따른 줄기 길이 신장 또한 1.3 cm로 가장 좋게 나타났다. 신초의 발근은 0.2 mg/L IBA처리구에서 65% 발근율과 3.9개 뿌리가 유도되어 가장 효과적인 처리구였으며, 이렇게 재분화된 기내식물체는 순화를 거쳐 현재 생육포지에서 활발히 생육 중에 있다.

Keywords

References

  1. Arnold SV, Tillberg E (1987) The influence of cytokinin pulse treatments on adventitious bud formation on vegetative buds of Picea abies. Plant Cell Tiss Org Cult 9:253-261 https://doi.org/10.1007/BF00040811
  2. Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev. Biol-Plant 36:163-170
  3. Benson EE, Lynch PT and Jones J (1995) The use of the iron chelating agent desferrioxamine in rice cell cryopreservation:a novel approach for improving recovery. Plant Sci 110:249-258 https://doi.org/10.1016/0168-9452(95)04201-5
  4. Forest Resource Division, Forest Industry & Policy Bureau, Korea Forest Service (2019) 2019 Forest Resource Section Business Plan. p7
  5. Ishii K (1986) In vitro plantlet formation from adventitious buds on juvenile seedlings of Hinoki cypress (Chamaecyparis obtusa). Plant Cell Tiss Org Cult 7:247-255 https://doi.org/10.1007/BF00037741
  6. Ishii K, Maruyama E and Hosoi Y (2003) Plant regeneration by somatic embryogenesis from in vitro-cultured shoots of hinoki cypress(Chamaecyparis obtusa Sieb. et Zucc.). Propa Orna Plants 3:19-22
  7. Joseph J Kieber and Eric Schaller G (2018) Cytokinin signaling in plant. Dev 145: dev149344. doi:10.1242/dev.149344
  8. Khamushi M, Dehestani-Ardakani M, Zarei A, Kamali Aliabad K. (2019) An efficient protocol for micropropagation of old cypress of Abarkuh (Cupressus sempervirens var. horizontalis [Mill.]) under in vitro condition. Plant Cell Tiss Org Cult 138:597-601 https://doi.org/10.1007/s11240-019-01645-z
  9. Kim JH, Lee SO, Do KB, Ji WD, Kim SG, Back YD and Kim KJ (2018) Analysis of the Component and Immunological Efficacy of Chamaecyparis obtusa Leaf Extract. Kor J Clin Lab Sci 50(1):37-43 https://doi.org/10.15324/kjcls.2018.50.1.37
  10. Kagenishi T, Yokawa K and Baluska F (2016) MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex. Frontiers in Plant Sci 7:79
  11. Katy A. Nour and Trevor A. Thorpe (1993) In vitro shoot multiplication of eastern white cedar (Thuja occidentals). In Vitro Cell Dev-Plant 29:65-71 https://doi.org/10.1007/BF02632254
  12. Lee SW, Cho MS, Kim WG, Kim JW, Chu NH (2011) Containerized seedling production system of Chamaecyparis obtusa. NIFoS 413:30
  13. Litvay JD, Verma DC and Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325-328 https://doi.org/10.1007/BF00269890
  14. Malabadi RB, Van Staden J (2005) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol-Plant 41:181-186 https://doi.org/10.1079/IVP2004623
  15. Maruyama E, Hosoi Y and Ishii K (2003) Somatic embryo culture for propagation, artificial seed production, and conservation of sawaracypress (Chamaecyparis pisifera Sieb. et Zucc.) J For Res 8:1-8 https://doi.org/10.1007/s103100300000
  16. Min JY, Park DJ, Jeong MJ, Song HJ, Kim YD , Kang YM, Karigar CS, and Choi MS (2010) In vitro propagation of Chamaecyparis obtusa sieb. et Zucc. Propa Orna Plants 10:117-121
  17. Okamura M, Senda M and Kondo T (1994) Rooting from the encapsulated adventitious buds of Hinoki, Chamaecyparis obtusa. Jpn For Soc 76:601-603
  18. Sasamoto H, Kondo A, Hosoi Y, Maki H and Odani K (1992) Callus regeneration from cotyledon protoplasts of Chamaecyparis obtusa (Hinoki cypress). In Vitro Cell Dev Bio-Plant 28(3):132-136 https://doi.org/10.1007/BF02823061
  19. Taniguchi T, KUrita M, Itahana N and Kondo T (2004) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) Plant Cell Rep 23:26-31 https://doi.org/10.1007/s00299-004-0803-1
  20. Teasdale RD, Dawson PA, Woolhouse HW (1986) Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Plant Physiol 82:942-945 https://doi.org/10.1104/pp.82.4.942
  21. Teixeira da Silva JA, Dobranszki J and Ross S (2013) Phloroglucinol in plant tissue culture. In Vitro Cell Dev-Plant 49:1-16 https://doi.org/10.1007/s11627-013-9491-2