DOI QR코드

DOI QR Code

Opto-electrokinetic Technique for Microfluidic Manipulation of Microorganism

광-전기역학 기술을 이용한 미생물의 미세유체역학적 제어

  • Kwon, Jae-Sung (Department of Mechanical Engineering, Incheon National University)
  • Received : 2019.04.03
  • Accepted : 2019.04.25
  • Published : 2019.04.30

Abstract

This paper introduces microfluidic manipulation of microorganism by opto-electrokinetic technique, named rapid electrokinetic patterning (REP). REP is a hybrid method that utilizes the simultaneous application of a uniform electric field and a focused laser to manipulate various kinds and types of colloidal particles. Using the technique in preliminary experiments, we have successfully aggregated, translated, and trapped not only spherical polystyrene, latex, and magnetic particles but also ellipsoidal glass particles. Extending the manipulation target to cells, we attempted to manipulate saccharomyces cerevisiae (S. cerevisiae), the most commonly used microorganism for food fermentation and biomass production. As a result, S. cerevisiae were assembled and dynamically trapped by REP at arbitrary location on an electrode surface. It firmly establishes the usefulness of REP technique for development of a high-performance on-chip bioassay system.

Keywords

GSSGB0_2019_v17n1_69_f0001.png 이미지

Fig. 1. Hybrid characteristic and physical mechanism of REP. (a) Change of particle cluster observed when switching on and off a uniform AC electric field and a focused laser alternatively. (b) Interrelation of electrostatic, electrohydrodynamic and electrothermal forces involved in REP.

GSSGB0_2019_v17n1_69_f0002.png 이미지

Fig. 2. Experimental setup for REP manipulation. (a) Schematic of REP experimental system. (b) Structure of a microfluidic chip to create REP manipulation environment.

GSSGB0_2019_v17n1_69_f0003.png 이미지

Fig. 3. Various manipulations of 1μm-diameter polystyrene particles by REP. (a) Particle aggregation. (b) Particle translation. (c) Dynamic collection of particles. (d) Particle trapping in a continuous fluid flow. For the manipulations shown in (a)-(c), AC electric signal of 26.1kHz and 4.0Vpp and laser power of 20mW were provided to the microfluidic chip. The manipulation in (d) was achieved by 20.1kHz AC frequency, 5.4Vpp electric potential, and 20mW laser power. All the scale bars represent 10μm length.

GSSGB0_2019_v17n1_69_f0004.png 이미지

Fig. 4. Manipulation of other kinds and types of colloidal particles by REP. (a) 1μm-diameter spherical latex particles. The AC electric signal and laser power applied for the manipulation are 15kHz, 7.1Vpp, and 20mW respectively. (b) 1μm-diameter spherical glass particles. The AC electric signal and laser power applied for the manipulation are 27.5kHz, 8.2Vpp, and 20mW respectively. (c) 1μm-diameter spherical magnetic particles. The AC electric signal and laser power applied for the manipulation are 28.8kHz, 6.1Vpp, and 20mW respectively. (d) Ellipsoidal glass particles. The ratio of major and minor axis of the particles is 1.2:1, and the length of the minor axis is 1μm. The AC electric signal and laser power applied for the manipulation are 11.9kHz, 6.8Vpp, and 20mW respectively. All the scale bars represent 10μm length.

GSSGB0_2019_v17n1_69_f0005.png 이미지

Fig. 5. Demonstration of bio-compatibility of REP technique. (a) Aggregation of S. cerevisiae at arbitrary location on an electrode surface. (b) Dynamic trapping of S. cerevisiae along with movement of a focused laser. For the aggregation and dynamic trapping, AC electric signal of 8.87kHz and 6Vpp and laser power of 30mW were provided to the chip. The scale bars all represent 20μm length.

References

  1. Belder, D., 2005." Microfluidics with Droplets." Angew. Chem. Int. Ed.Vol. 44,pp. 3521-3522. https://doi.org/10.1002/anie.200500620
  2. Bhagat, A.A.S., Bow, H., Hou, H.W., Tan, S.J., Han, J. and Lim, C.T., 2010." Microfluidics for cell separation." Medical and Biological Engineering and Computing.Vol. 48,pp. 999-1014. https://doi.org/10.1007/s11517-010-0611-4
  3. Gravesen, P., Branebjerg, J. and Jensen, O.S., 1993." Microfluidics-a review." Journal of Micromechanics and Microengineering.Vol. 3,pp. 168-182. https://doi.org/10.1088/0960-1317/3/4/002
  4. Yi, C., Li, C.-W., Ji, S. and Yang, M., 2006." Microfluidics technology for manipulation and analysis of biological cells." Anal. Chim. Acta.Vol. 560,pp. 1-23. https://doi.org/10.1016/j.aca.2005.12.037
  5. Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lindgren, A.G., Yang, O.O., Rao, J., Clark, A.T. and Carlo, D.D., 2012." Hydrodynamic stretching of single cells for large population mechanical phenotyping." Proceedings of the National Academy of Sciences.Vol. 109,pp. 7630-7635. https://doi.org/10.1073/pnas.1200107109
  6. Justin, G., Nasir, M. and Ligler, F.S., 2011." Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device." Analytical and Bioanalytical Chemistry.Vol. 400,pp. 1347-1358. https://doi.org/10.1007/s00216-011-4872-z
  7. Tanyeri, M., Ranka, M. and Sittipolkul, N., 2011." A microfluidic-based hydrodynamic trap: design and implementation." Lab Chip.Vol. 11,pp. 1786-1794. https://doi.org/10.1039/c0lc00709a
  8. Yamada, M. and Seki, M., 2005." Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics." Lab on a Chip.Vol. 5,pp. 1233-1239. https://doi.org/10.1039/b509386d
  9. Furlani, E.P., 2007." Magnetophoretic separation of blood cells at the microscale." J. Phys. D: Appl. Phys.Vol. 40,pp. 1313-1319. https://doi.org/10.1088/0022-3727/40/5/001
  10. Pshenichnikov, A.F. and Ivanov, A.S., 2012." Magnetophoresis of particles and aggregates in concentrated magnetic fluids." Physical Review E.Vol. 86,pp. 05140101-05140111.
  11. Watarai, H., Suwa, M. and Iiguni, Y., 2004." Magnetophoresis and electromagnetophoresis of microparticles in liquids." Analytical and Bioanalytical Chemistry.Vol. 378,pp. 1693-1699. https://doi.org/10.1007/s00216-003-2354-7
  12. Deyl, Z., 1982. Electrophoresis. A Survey of Techniques and Applications, Elsevier Science Ltd., New York.
  13. Gas, B., 2009." Theory of electrophoresis: Fate of one equation." Electrophoresis.Vol. 30,pp. S7-S15. https://doi.org/10.1002/elps.200900133
  14. Kohlheyer, D., Eijkel, J.C.T., Berg, A.v.d. and Schasfoort, R.B.M., 2008." Miniaturizing free-flow electrophoresis - a critical review." Electrophoresis. Vol. 29,pp. 977-993. https://doi.org/10.1002/elps.200700725
  15. Doh, I. and Cho, Y.-H., 2005." A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process." Sensors and Actuators A.Vol. 121,pp. 59-65. https://doi.org/10.1016/j.sna.2005.01.030
  16. Gascoyne, P.R.C. and Vykoukal, J., 2002." Particle separation by dielectrophoresis." Electrophoresis.Vol. 23,pp. 1973-1983. https://doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
  17. Hu, X., Bessette, P.H., Qian, J., Meinhart, C.D., Daugherty, P.S. and Soh, H.T., 2005." Marker-specific sorting of rare cells using dielectrophoresis." Proceedings of the National Academy of Sciences of the United States of America.Vol. 102,pp. 15757-15761. https://doi.org/10.1073/pnas.0507719102
  18. Pethig, R., 2007. Cell Physiometry Tools based on Dielectrophoresis, BioMEMS and Biomedical Nanotechnology. pp. 103-126.
  19. Zhang, C., Khoshmanesh, K., Mitchell, A. and Kalantar-zadeh, K., 2010." Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems." Analytical and Bioanalytical Chemistry. Vol. 396,pp. 401-420. https://doi.org/10.1007/s00216-009-2922-6
  20. Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H. and Fukuda, T., 2005." On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel." Lab Chip.Vol. 5,pp. 1399-1403. https://doi.org/10.1039/b502546j
  21. Block, S.M., Blair, D.F. and Berg, H.C., 1989." Compliance of bacterial flagella measured with optical tweezers." Nature.Vol. 338,pp. 514-518. https://doi.org/10.1038/338514a0
  22. Moffitt, J.R., Chemla, Y.R., Smith, S.B. and Bustamante, C., 2008." Recent Advances in Optical Tweezers." Annu. Rev. Biochem.Vol. 77,pp. 205-228. https://doi.org/10.1146/annurev.biochem.77.043007.090225
  23. Williams, S.J., Kumar, A. and Wereley, S.T., 2008." Electrokinetic patterning of colloidal particles with optical landscapes." Lab Chip.Vol. 8,pp. 1879-1882. https://doi.org/10.1039/b810787d
  24. Chiou, P.Y., Ohta, A.T. and Wu, M.C., 2005." Massively parallel manipulation of single cells and microparticles using optical images." Nature.Vol. 436,pp. 370-372. https://doi.org/10.1038/nature03831
  25. Kwon, J.-S. and Wereley, S.T., 2013." Towards New Methodologies for Manipulation of Colloidal Particles in a Miniaturized Fluidic Device: Optoelectrokinetic Manipulation Technique." J. Fluids Eng.Vol. 135,pp. 0213061-0213010.
  26. Kumar, A., Kwon, J.-S., Williams, S.J., Green, N.G., Yip, N.K. and Wereley, S.T., 2010." Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface." Langmuir.Vol. 26,pp. 5262-5272. https://doi.org/10.1021/la904661y
  27. Kumar, A., Williams, S.J., Chuang, H.-S., Green, N.G. and Wereley, S.T., 2011." Hybrid opto-electric manipulation in microfluidicsopportunities and challenges." Lab Chip.Vol. 11,pp. 2135-2148. https://doi.org/10.1039/c1lc20208a
  28. Mishra, A., Khor, J.-W., Clayton, K.N., Williams, S.J., Pan, X., Kinzer-Ursem, T. and Wereley, S., 2016." Optoelectric patterning: Effect of electrode material and thickness on laser-induced AC electrothermal flow." Electrophoresis.Vol. 37,pp. 658-665. https://doi.org/10.1002/elps.201500473
  29. Williams, S.J., Kumar, A., Green, N.G. and Wereley, S.T., 2009." A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles." Nanoscale.Vol. 1,pp. 133-137. https://doi.org/10.1039/b9nr00033j
  30. Kwon, J.-S., Thakur, R. and Wereley, S.T., 2012. Rapid Electrokinetic Patterning, in: Bhushan, B. (Ed.), Encyclopedia of nanotechnology. Springer, Dordrecht ; New York.
  31. Kwon, J.-S., Ravindranath, S.P., Kumar, A., Irudayaraj, J. and Wereley, S.T., 2012." Opto-electrokinetic manipulation for high-performance on-chip bioassays." Lab Chip.Vol. 12,pp. 4955-4959. https://doi.org/10.1039/c2lc40662d
  32. Mishra, A., Maltais, T.R., Walter, T.M., Wei, A., Williams, S.J. and Wereley, S.T., 2016." Trapping and viability of swimming bacteria in an optoelectric trap." Lab Chip.Vol. 16,pp. 1039-1046. https://doi.org/10.1039/C5LC01559F
  33. Kim, M.-J., Nam, S.-W., Tamano, K., Machida, M., Kim, S.-K. and Kim, Y.-H., 2011." Optimization for Production of Exo-$\beta$-1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae." Korean Society for Biotechnology and Bioengineering. Vol. 26,pp. 427-432.
  34. Ristenpart, W.D., Aksay, I.A. and Saville, D.A., 2004." Assembly of colloidal aggregates by electrohydrodynamic flow: Kinetic experiments and scaling analysis." Physical Review E.Vol. 69,pp. 214051-214058.
  35. Morgan, H. and Green, N.G., 2002. AC electrokinetics: colloids and nanoparticles, Research Studies Press LTD., Baldock.
  36. Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., SooPark, H. and Kim, H.J., 2003." Operational parameters affecting the performannce of a mediator-less microbial fuel cell." Biosens. Bioelectron.Vol. 18,pp. 327-334. https://doi.org/10.1016/S0956-5663(02)00110-0
  37. Rijken, D.C. and Collen, D., 1981." Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture." The Journal of Biological Chemistry.Vol. 256,pp. 7035-7041. https://doi.org/10.1016/S0021-9258(19)69095-2
  38. Frizzell, R.A., Rechkemmer, G. and Shoemaker, R.L., 1986." Altered regulation of airway epithelial cell chloride channels in cystic fibrosis." Science.Vol. 233,pp. 558-560. https://doi.org/10.1126/science.2425436
  39. Morris, G.J., Winters, L., Coulson, G.E. and Clarke, K.J., 1983." Effect of Osmotic Stress on the Ultrastructure and Viability of the Yeast Saccharomyces cerevisiae." J. Gen. Microbiol. Vol. 129,pp. 2023-2034.