DOI QR코드

DOI QR Code

A Study on the Influence of Release Characteristics of Phosphorus Fraction in the Sediment

연안 퇴적물에서 인의 존재형태가 용출 특성에 미치는 영향에 대한 연구

  • Kim, Beom-Geun (Dept. of Ocean System Engineering, Gyeongsang National Univ.) ;
  • Khirul, Md Akhte (Dept. of Ocean System Engineering, Gyeongsang National Univ.) ;
  • Kwon, Sung-Hyun (Dept. of Marine Environmental Engineering, Engineering Research Institude(ERI), Gyeongsang National Univ.)
  • Received : 2019.03.05
  • Accepted : 2019.04.08
  • Published : 2019.04.30

Abstract

This study investigated the effect of the sediment phosphorus fraction sampled from the southern coast of Korea on the release characteristics of sediments by environmental changes of water quality. We conducted the release experiment in the laboratory for 20 days and measured the phosphorus fraction properties, the environmental factors of water quality, and the release rate of total phosphorus. The results showed a decrease in dissolved oxygen by the growth of microorganisms in the water layer, leading to the anaerobic condition in which the redox potential of the sediments decreased. As such, the decreasing variability of phosphates bonded to iron oxide in the sediment phosphorus was higher after 20 days of the release experiment than the first day. It means that the metal ions and the separated inorganic phosphorus transfer into the water when the iron oxide is reduced. The separated inorganic phosphorus is easily absorbed by the plankton. The analysis of total phosphorus in the water layer showed that it continuously increased to up to 0.304 mg/L for 20 days, and the release rate had a high correlation with the decrease of dissolved oxygen after 5 days of culture. Therefore, it is necessary to pay attention to the characteristics of iron bonded to phosphorus in the phosphorus fraction and dissolved oxygen to manage the eutrophication of the system.

본 연구는 남해 연안에서 채취한 퇴적물을 대상으로 수질의 환경변화에 의해 퇴적물이 용출 특성에 미치는 영향을 파악하기 위해 실험실에서 20일 동안 용출 배양실험을 진행하였으며, 퇴적물 인의 존재형태와 수질의 환경 인자, 총 인의 용출률을 측정하였다. 관찰 결과, 수층에서 미생물의 성장에 의해 용존 산소가 감소하여, 퇴적물의 산화환원전위가 낮아지는 혐기성환경이 진행되었다. 그에 따라 배양 초기일과 20일 후를 비교하면, 퇴적물 인의 존재 형태 중철 산화물과 결합한 인산염의 감소하는 변동성이 높게 나타났다. 이는 철 산화물이 환원될 경우 금속 이온과 분리된 무기인이 수중으로 이동하는 것을 의미하는데, 분리된 무기인은 플랑크톤에 의해 잘 흡수되는 특성을 가진다. 수층의 총 인을 분석한 결과 20일 차 0.304mg/L까지 지속적으로 증가하였으며, 산정된 용출률의 경우 배양 5일 이후 용존 산소의 감소와 높은 관계성을 보였다. 따라서 본 연구의 결과로부터, 수층의 부영양화를 관리하기 위한 요소로서 수질의 용존 산소와 퇴적물 인의 존재형태 중 철 산화물의 중요성을 확인할 수 있었다.

Keywords

References

  1. Andersen, J.(1975) Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol. 76: 411-419.
  2. Boers, P. C.(1991) The influence of pH on phosphate release from lake sediments. Water Res. 25: 309-311. https://doi.org/10.1016/0043-1354(91)90010-N
  3. Bostrom, B.(1982) Phosphorus release from lake sediment. Arch. Hydrobiol. Beih. Ergebn. Limn. 18: 5-59.
  4. Bostrom, B., J.M. Andersen, S. Fleischer and M. Jansson(1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229-244. https://doi.org/10.1007/BF00024907
  5. Cha H., C. Lee, B. Kim, M. Choi and K. Ruttenberg(2005) Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern east sea (Japan sea). Mar. Geol. 216: 127-143. https://doi.org/10.1016/j.margeo.2005.02.001
  6. Chapra, S. C.(2008) Surface water-quality modeling. Waveland press.
  7. Dapeng, L., H. Yong, F. Chengxin and Y. Yan(2011) Contributions of phosphorus on sedimentary phosphorus bioavailability under sediment resuspension conditions. Chem. Eng. J. 168: 1049-1054. https://doi.org/10.1016/j.cej.2011.01.082
  8. Fisher, T.R., P.R. Carlson and R. Barber(1982) Sediment nutrient regeneration in three north carolina estuaries. Estuar. Coast. Shelf Sci. 14: 101-116. https://doi.org/10.1016/S0302-3524(82)80069-8
  9. Froelich, P., M. Bender, N. Luedtke, G. Heath and T. DeVries(1982) The marine phosphorus cycle. Am. J. Sci. 282: 474-511. https://doi.org/10.2475/ajs.282.4.474
  10. Grande, K.D., P.J.L. Williams, J. Marra, D. A. Purdie, K. Heinemann, R.W. Eppley and M.L. Bender(1989) Primary production in the north pacific gyre: A comparison of rates determined by the 14C, O2 concentration and 18O methods. Deep Sea Research Part A. Oceanographic Research Papers 36: 1621-1634. https://doi.org/10.1016/0198-0149(89)90063-0
  11. Hieltjes, A.H. and L. Lijklema(1980) Fractionation of inorganic phosphates in calcareous sediments 1. J. Environ. Qual. 9: 405-407. https://doi.org/10.2134/jeq1980.00472425000900030015x
  12. Jensen, H.S. and B. Thamdrup(1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Proceedings of the Third International Workshop on Phosphorus in Sediments, pp. 47-59.
  13. Kaya, K., Y. Liu, Y. Shen, B. Xiao and T. Sano(2005) Selective control of toxic microcystis water blooms using lysine and malonic acid: An enclosure experiment. Environmental Toxicology: An International Journal 20: 170-178. https://doi.org/10.1002/tox.20092
  14. Kenner, R. and S. Ahmed(1975) Correlation between oxygen utilization and electron transport activity in marine phytoplankton. Mar. Biol. 33: 129-133. https://doi.org/10.1007/BF00390717
  15. Ki, B., B. Lim, E. Na and J. Choi(2010) A study on the nutrient release characteristics from sediments in the asan reservoir. Journal of Korean Society of Environmental Engineers 32: 1-8. (in Korean with English abstract)
  16. Lee, J., T. Ahn and J. Oh(2010) A study on the influence of water quality on the phosphorus fraction properties from reservoir sediments. Journal of Korean Society of Environmental Engineers 32: 840-850. (in Korean with English abstract)
  17. Mort, H.P., C.P. Slomp, B.G. Gustafsson and T.J. Andersen(2010) Phosphorus recycling and burial in baltic sea sediments with contrasting redox conditions. Geochim. Cosmochim. Acta 74: 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016
  18. Murray, L. and R.L. Wetzel(1987) Oxygen production and consumption associated with the major autotrophic components in two temperate seagrass communities. Mar. Ecol. Prog. Ser. 38: 231-239. https://doi.org/10.3354/meps038231
  19. Nealson, K.H. and D. Saffarini(1994) Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  20. Oh, H.S., I.A. Huh and J.H. Choi(2017) Laboratory study of phosphorus fractionation in the sediments of yeongsan river. Journal of Korean Society Environmental Engineers 39: 519-526. (in Korean with English abstract) https://doi.org/10.4491/KSEE.2017.39.9.519
  21. Ruttenberg, K., N. Ogawa, F. Tamburini, R. Briggs, N. Colasacco and E. Joyce(2009) Improved, high‐throughput approach for phosphorus speciation in natural sediments via the SEDEX sequential extraction method. Limnology and Oceanography: Methods 7: 319-333. https://doi.org/10.4319/lom.2009.7.319
  22. Ruttenberg, K.C. and R.A. Berner(1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57: 991-1007. https://doi.org/10.1016/0016-7037(93)90035-U
  23. Ruttenberg, K.C.(1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37: 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  24. Son, J., T. Lee and H.S. Yang(1999) Phosphorus phases in the surface sediment of the south sea. Korean Journal of Fisheries and Aquatic Sciences 32: 680-687. (in Korean with English abstract)
  25. Sondergaard, M., J.P. Jensen and E. Jeppesen(1999) Internal phosphorus loading in shallow danish lakes. Springer, 145pp.
  26. Stookey, L.L.(1970) Ferrozine---a new spectrophotometric reagent for iron. Anal. Chem. 42: 779-781. https://doi.org/10.1021/ac60289a016
  27. Taylor, A.W. and H.M. Kunishi(1971) Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. J. Agric. Food Chem. 19: 827-831. https://doi.org/10.1021/jf60177a061
  28. Viollier, E., P. Inglett, K. Hunter, A. Roychoudhury and P. Van Cappellen(2000) The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl. Geochem. 15: 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  29. Watanabe, F.S. and S.R. Olsen(1962) Colorimetric determination of phosphorus in water extracts of soil. Soil Sci. 93: 183-188. https://doi.org/10.1097/00010694-196203000-00005