Fig. 1 Schematic diagram of air-type PVT collector design10)
Fig. 2 Experiment of air-type PVT collector
Fig. 3 Thermal and electrical efficiency of PVT collector
Fig. 4 Thermal efficiency by air flowrate
Fig. 5 Air temperature rise of inlet and outlet by air-flowrate
Fig. 6 Maximum PV power by irradiance
Fig. 7 Maximum PV power by average PV temperature
Table 1 PV module specification
Table 2 Permitted deviation of measured parameters during a measurement period3)
References
- Sathe, T. M. and Dhoble, A. S., A review on recent advancements in photovoltaic thermal techniques, Renewable and Sustainable Energy Reviews, Vol. 76, pp. 645-672, 2017. https://doi.org/10.1016/j.rser.2017.03.075
- Kim, J. H. and Kim, J. T., A Literature Review on Hybrid PV/Thermal Air Collector in terms of its Design and Performance, Journal of the Korean Solar Energy Society, Vol. 34, pp. 30-41, 2014. https://doi.org/10.7836/kses.2014.34.3.030
- ISO 9806:2017, Solar energy-Solar thermal collectors-Test methods, International Organization for Standard, 2017.
- Euh, S. H., Lee, J. B., Choi, Y. S., and Kim, D. H., The Performance and Efficiency Analysis of a PVT System Compared with a PV Module and a Solar Collector, Journal of the Korean Solar Energy Society, Vol. 32, pp. 1-10, 2012.
- Riffat, Saffa B. and Erdem Cuce., A Review on Hybrid Photovoltaic/thermal Collectors and Systems, International Journal of Low-Carbon Technologies, Vol. 6, pp. 212-241, 2011. https://doi.org/10.1093/ijlct/ctr016
- Kim, J. H., Park, S. H., and Kim, J. T., Experimental Performance of a Photovoltaic-thermal Air Collector, Energy Procedia, Vol. 48, pp. 888-894, 2014. https://doi.org/10.1016/j.egypro.2014.02.102
- Hasan, M. Arif, and K. Sumathy, Photovoltaic Thermal Module Concepts and Their Performance Analysis: A Review, Renewable and Sustainable Energy Reviews, Vol. 17, pp. 1845-1859, 2010. https://doi.org/10.1016/j.rser.2010.03.011
- Hu, J., Sun, X., Xu, J., and Li, Z., Numerical Analysis of Mechanical Ventilation Solar Air Collector with Internal Baffles, Energy and Buildings, Vol. 62, pp. 230-238, 2013. https://doi.org/10.1016/j.enbuild.2013.03.015
- Kang, J. G., Kim, J. H., and Kim, J. T., A Study on the Perforamnce Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades, Journal of the Korean Solar Energy Society, Vol. 30, pp. 56-62, 2010.
- Delisle, V., Kim, J. T., Kim, J. H., Gagne, A., and Ayoub, J., Performance Assessment of a New Air-Based Building-Integrated Photovoltaic Thermal Solar Collector, EU PVSEC, 2017.
- Charles Lawrence Kamuyu, W., Lim, J., Won, C., and Ahn, H., Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs, Energies, Vol. 11, 2018.
- KS C IEC 61215:2016, Crystalline silicon terrestrial photovoltaic(PV) modules - Design qualification and type approval, International Electrotechnical Commission, 2016.
- Kim, K. S., Kang, G. H., Yu, G. J., Yoon, S. G, Roof-attached Crystalline Silicon Photovoltaic Module's Thermal Characteristics, Journal of the Korean Solar Energy Society, Vol. 32, pp. 11-18, 2012.
Cited by
- 태양광열 시스템의 신뢰성 평가에 관한 연구 vol.16, pp.4, 2019, https://doi.org/10.7849/ksnre.2020.0021
- An Experimental Study on the Energy and Exergy Performance of an Air-Type PVT Collector with Perforated Baffle vol.14, pp.10, 2019, https://doi.org/10.3390/en14102919
- Pre-Analysis CFD Simulation of Air Path Design for Soundproof Photovoltaic-Thermal Wall vol.17, pp.3, 2019, https://doi.org/10.7849/ksnre.2021.2022