DOI QR코드

DOI QR Code

Cellulosic Nanomaterial Production Via Fermentation by Komagataeibacter sp. SFCB22-18 Isolated from Ripened Persimmons

  • Park, Myung Soo (School of Biological Sciences and Institution of Microbiology, Seoul National University) ;
  • Jung, Young Hoon (School of Food Science and Biotechnology, Food and Bio-industry Institute, Kyungpook National University) ;
  • Oh, Seung-Yoon (School of Biological Sciences and Institution of Microbiology, Seoul National University) ;
  • Kim, Min Ji (School of Biological Sciences and Institution of Microbiology, Seoul National University) ;
  • Bang, Won Yeong (School of Food Science and Biotechnology, Food and Bio-industry Institute, Kyungpook National University) ;
  • Lim, Young Woon (School of Biological Sciences and Institution of Microbiology, Seoul National University)
  • Received : 2019.01.03
  • Accepted : 2019.03.11
  • Published : 2019.04.28

Abstract

Bacterial nanocellulose (BNC) which is generally synthesized by several species of bacteria has a wide variety of industrial uses, particularly in the food and material industries. However, the low levels of BNC production during the fermentation process should be overcome to reduce its production cost. Therefore, in this study, we screened and identified a new cellulose-producing bacterium, optimized production of the cellulose, and investigated the morphological properties of the cellulosic materials. Out of 147 bacterial isolates from ripened fruits and traditional vinegars, strain SFCB22-18 showed the highest capacity for BNC production and was identified as Komagataeibacter sp. based on 16S rRNA sequence analysis. During 6-week fermentation of the strain using an optimized medium containing 3.0% glucose, 2.5% yeast extract, 0.24% acetic acid, 0.27% $Na_2HPO_4$, and 0.5% ethanol at $30^{\circ}C$, about 5 g/l of cellulosic material was produced. Both imaging and IR analysis proved that the produced cellulose would be nanoscale bacterial cellulose.

Keywords

References

  1. Moniri M, Boroumandmoghaddam A, Azizi S, Abdul RR, Bin AA, Zuhainis SW, et al. 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomater. 7: 257-283. https://doi.org/10.3390/nano7090257
  2. Jonas R, Farah LF. 1998. Production and application of microbial cellulose. Polym. Degrad. Stab. 59: 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3
  3. Raghunathan D. 2013. Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int. J. Curr. Microbiol. Appl. Sci. 2: 275-290.
  4. Esa F, Tasirin SM, Rahman NA. 2014. Overview of bacterial cellulose production and application. Agric. Agric. Sci. Procedia 2: 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  5. Ruka DR, Simon GP, Dean KM. 2012. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr. Polym. 89: 13-622.
  6. Rangaswamy BE, Vanitha KP, Hungund BS. 2015. Microbial cellulose production from bacteria isolated from rotten fruit. Int. J. Polym. Sci. 2015: 1-8. https://doi.org/10.1155/2015/280784
  7. Sharafi SM, Rasooli I, Beheshti-Maal K. 2010. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iran J. Microbiol. 2: 38-45.
  8. Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, et al. 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 45: 23-28. https://doi.org/10.2323/jgam.45.23
  9. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57: 449-453. https://doi.org/10.1007/s00284-008-9228-3
  10. Okiyama A, Motoki M, Yamanaka S. 1992. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll. 6: 479-487. https://doi.org/10.1016/S0268-005X(09)80033-7
  11. Prashant RC, Ishwar BB, Shrikant AS, Rekha SS. 2009. Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47: 107-124.
  12. Kamoun EA, Kenawy E-RS, Chen X. 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8: 217-233. https://doi.org/10.1016/j.jare.2017.01.005
  13. Sukara E, Meliawati R. 2014. Potential values of bacterial cellulose for industrial applications. J. Selulosa 4: 7-16.
  14. Ullah H, Santos HA, Khan T. 2016. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23: 2291-2314. https://doi.org/10.1007/s10570-016-0986-y
  15. Sannino A, Demitri C, Madaghiele M. 2009. Biodegradable cellulose-based hydrogels: design and applications. Mater. 2: 353-373. https://doi.org/10.3390/ma2020353
  16. Schramm M, Hestrin S. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129. https://doi.org/10.1099/00221287-11-1-123
  17. Ahn YH., Park JH, Go SH, Jun HK. 2007. Characterization of bacterial cellulose production by Gluconacetobacter sp. JH232. J. Life Sci. 17: 1582-1586. https://doi.org/10.5352/JLS.2007.17.11.1582
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  21. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE. 2008. Production and characterization of economical bacterial cellulose. BioResources. 3: 1196-1217
  22. Hidalgo C, Mateo E, Mas A, Torija MJ. 2012. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 30: 98-104. https://doi.org/10.1016/j.fm.2011.12.017
  23. Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW. 2006. Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar, pp. 705-715. In McMillan, JD, Adney, WS, Mielenz, JR, Klasson, KT (eds.), Twenty-Seventh symposium on biotechnology for fuels and chemicals, Humana Press, Totowa, NJ.
  24. Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P. 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 16: 470-482.
  25. Khattak WA, Khan T, Ul-Islam M, Ullah MW, Khan S, Wahid F, et al. 2015. Production, characterization and biological features of bacterial cellulose from scum obtained druing preparation of sugarcane jiggery (gur). J. Food Sci. Technol. 52: 8343-8349. https://doi.org/10.1007/s13197-015-1936-7
  26. Du R, Zhao F, Peng Q, Zhou Z, Han Y. 2018. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polymers. 194: 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041
  27. Lustri WR, Barud HGdO, Barud HdS, Peres MFS, Gutierrez J, Tercjak A, et al. 2015. Microbial cellulose - biosynthesis mechanisms and medical applications, pp.133-157. In Poletto M, Junior HLO (eds.), Cellulose - fundamental aspects and current trends, InTech, Rijeka.
  28. Zahan KA, Nordin K, Mustapha M, Zairi MNM. 2015. Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production. Appl. Mech. Mater. 815: 3-8. https://doi.org/10.4028/www.scientific.net/AMM.815.3
  29. Suwanposri A, Yukphan P, Yamada Y, Ochaikul D. 2014. Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo Int. J. Sci. Technol. 8: 1-14.
  30. Czaja W, Romanovicz D, Brown RM. 2004. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403-411. https://doi.org/10.1023/B:CELL.0000046412.11983.61
  31. Molina-Ramirez C, Castro M, Osorio M, Torres-Taborda M, Gomez B, Zuluaga R, et al. 2017. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Mater. 10: 639-651. https://doi.org/10.3390/ma10060639
  32. Romling U, Galperin MY. 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions. Trends Microbiol. 23: 545-557. https://doi.org/10.1016/j.tim.2015.05.005
  33. Esin PC, Halil B. 2011. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10: 5346-5354.
  34. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. 2013. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86: 215-219. https://doi.org/10.1016/S0960-8524(02)00176-1
  35. Park JK, Jung JY, Park YH. 2003. Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25: 2055-2059. https://doi.org/10.1023/B:BILE.0000007065.63682.18
  36. Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, et al. 2015. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16: 14832-14849. https://doi.org/10.3390/ijms160714832