DOI QR코드

DOI QR Code

Functionalized Poplar Powder as a Support Material for Immobilization of Enoate Reductase and a Cofactor Regeneration System

  • Li, Han (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University) ;
  • Cui, Xiumei (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University) ;
  • Zheng, Liangyu (Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University)
  • Received : 2018.11.30
  • Accepted : 2019.03.18
  • Published : 2019.04.28

Abstract

In this study, functionalized poplar powder (FPP) was used as a support material for the immobilization of enoate reductase (ER) and glucose-6-phosphate dehydrogenase (GDH) by covalent binding. Under optimal conditions, the immobilization efficiency of ER-FPP and GDH-FPP was 95.1% and 84.7%, and the activity recovery of ER and GDH was 47.5% and 37.8%, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis indicated that FPP was a suitable carrier for enzyme immobilization. ER-FPP and GDH-FPP exhibit excellent thermal stabilities and superior reusability. Especially, ER-FPP and GDH-FPP enable the continuous conversion of 4-(4-Methoxyphenyl)-3-buten-2-one with $NAD^+$ recycling. While the immobilization strategies established here were simple and inexpensive, they exploited a new method for the immobilization and application of ER and its cofactor recycling system.

Keywords

References

  1. Gao X, Ren J, Wu Q, Zhu D. 2012. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb. Technol. 51: 26-34. https://doi.org/10.1016/j.enzmictec.2012.03.009
  2. Stuermer R, Hauer B, Hall M, Faber K. 2007. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr. Opin. Chem. Biol. 11: 203-213. https://doi.org/10.1016/j.cbpa.2007.02.025
  3. Melanie H, Stueckler C, Hauer B, Stuermer R, Friedrich T, Breuer M, et al. 2008. Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1-3 from yeasts. Eur. J. Org. Chem. 2008: 1511-1516. https://doi.org/10.1002/ejoc.200701208
  4. W inkler CK, Tasnadi G, Clay D, Hall M, Faber K. 2012. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J. Biotechnol. 162: 381-389. https://doi.org/10.1016/j.jbiotec.2012.03.023
  5. Sch ittmayer M, Glieder A, Uhl MK, Winkler A, Zach S, Schrittwieser JH, et al. 2011. Old yellow enzyme-catalyzed dehydrogenation of saturated ketones. Adv. Synth. Catal. 353: 268-274. https://doi.org/10.1002/adsc.201000862
  6. Stueckler C, Hall M, Ehammer H, Pointner E, Kroutil W, Macheroux P, et al. 2007. Stereocomplementary bioreduction of ${\alpha}$, ${\beta}$-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol. Org. Lett. 9: 5409-5411. https://doi.org/10.1021/ol7019185
  7. Turrini NG, Hall M, Faber K. 2015. Enzymatics ynthesis of optically active lactones via asymmetric bioreduction using ene-reductases from the old yellow enzyme family. Adv. Synth. Catal. 357: 1861-1871. https://doi.org/10.1002/adsc.201500094
  8. Donk WACD, Zhao H. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426. https://doi.org/10.1016/S0958-1669(03)00094-6
  9. Endo T, Koizumi S. 2001. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv. Synth. Catal. 343: 521-526. https://doi.org/10.1002/1615-4169(200108)343:6/7<521::AID-ADSC521>3.0.CO;2-5
  10. Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. 2013. Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42: 6491-6533. https://doi.org/10.1039/c3cs00004d
  11. Betancor L, Berne C, Luckarifta HR, Spain JC. 2006. Coimmobilization of a redox enzyme and a cofactor regeneration system. Chem. Commun. 34: 3640-3642.
  12. Dicosimo R, Mcauliffe J, Poulose AJ, Bohlmann G. 2013. Industrial use of immobilized enzymes. Chem. Soc. Rev. 42: 6437-6474. https://doi.org/10.1039/c3cs35506c
  13. Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42: 6406-6436. https://doi.org/10.1039/c3cs35446f
  14. Wang Y, Zhang X, Han N, Wu Y, Wei D. 2018. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. Int. J. Biol. Macromol. 120: 100-108. https://doi.org/10.1016/j.ijbiomac.2018.08.074
  15. Zucca P, Lafuente RF, Sanjust E. 2016. Agarose and its derivatives as supports for enzyme immobilization. Molecules 21: 1-25. https://doi.org/10.3390/molecules21010001
  16. Osuna Y, Sandoval J, Saade H, Lopez RG, Martinez JL, Colunga EM, et al. 2015. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38: 1437-1445. https://doi.org/10.1007/s00449-015-1385-8
  17. Krajewska B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35: 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
  18. Li K, Chen ZB, Liu DL, Zhang L, Tang Z, Wang Z, et al. 2018. Design and synthesis study of the thermo-sensitive copolymer carrier of penicillin G acylase. Polym. Adv. Technol. 29: 1902-1912. https://doi.org/10.1002/pat.4299
  19. Li K, Liu XT, Zhang XF, Liu D, Zhang XY, Ma SM, et al. 2019. The engineering and immobilization of penicillin G acylase onto thermo-sensitive tri-block copolymer system. Polym. Adv. Technol. 30: 86-93. https://doi.org/10.1002/pat.4446
  20. Yilmaz E, Can K, Sezgin M, Yilmaz M. 2011. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresour. Technol. 102: 499-506. https://doi.org/10.1016/j.biortech.2010.08.083
  21. Hosseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A. 2018. Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. J. Agric. Food Chem. 66: 789-798. https://doi.org/10.1021/acs.jafc.7b03922
  22. Poojari Y, Clarson SJ. 2013. Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal. Agric. Biotechnol. 2: 7-11. https://doi.org/10.1016/j.bcab.2012.10.002
  23. Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, et al. 2013. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 42: 6262-6276. https://doi.org/10.1039/c3cs35464d
  24. Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M. 2012. Valorization of biomass: deriving more value from waste. Science 337: 695-699. https://doi.org/10.1126/science.1218930
  25. Parveen K, Diane MB, Michael JD, Pieter S. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729. https://doi.org/10.1021/ie801542g
  26. Li H, Xiao W, Xie P, Zheng L. 2018. Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme. Enzyme Microb. Technol. 109: 66-73. https://doi.org/10.1016/j.enzmictec.2017.09.013
  27. Tian X, Zhang S, Zheng L. 2016. Enzyme-Catalyzed Henry reaction in choline chloride-based deep eutectic solvents. J. Microbiol. Biotechnol. 26: 80-88. https://doi.org/10.4014/jmb.1506.06075
  28. Francisco M, Bruinhorst VDA, Kroon MC. 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14: 2153-2157. https://doi.org/10.1039/c2gc35660k
  29. Lynam JG, Reza MT, Vasquez VR, Coronella CJ. 2012. Pretreatment of rice hulls by ionic liquid dissolution. Bioresour. Technol. 114: 629-636. https://doi.org/10.1016/j.biortech.2012.03.004
  30. Lyna m JG, Kumar N, Wong MJ. 2017. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238: 684-689. https://doi.org/10.1016/j.biortech.2017.04.079
  31. Javier RM, Rivas BDL, Rosario M, Guisan JM, Fernando LG. 2012. Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with in situ recycling of soluble cofactors. ChemCatChem 4: 1279-1288. https://doi.org/10.1002/cctc.201200146
  32. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. 2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37: 790-802. https://doi.org/10.2144/04375RV01
  33. Barbosa O, Ortiz C, Murcia AB, Torres R, Rodrigues RC, Lafuente RF. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4: 1583-1600. https://doi.org/10.1039/C3RA45991H
  34. Wine Y, Hadar NC, Freeman A, Frolow F. 2007. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol. Bioeng. 98: 711-718. https://doi.org/10.1002/bit.21459
  35. Brady D, Jordaan J. 2009. Advances in enzyme immobilization. Biotechnol. Lett. 31: 1639-1650. https://doi.org/10.1007/s10529-009-0076-4
  36. Morad M, Nowicka E, Douthwaite M, Iqbal S, Miedziak P, Edwards JK, et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catal. Sci. Technol. 7: 1928-1936. https://doi.org/10.1039/C7CY00184C

Cited by

  1. Enzymatic strategies for asymmetric synthesis vol.2, pp.4, 2019, https://doi.org/10.1039/d1cb00080b