References
- Gao X, Ren J, Wu Q, Zhu D. 2012. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb. Technol. 51: 26-34. https://doi.org/10.1016/j.enzmictec.2012.03.009
- Stuermer R, Hauer B, Hall M, Faber K. 2007. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr. Opin. Chem. Biol. 11: 203-213. https://doi.org/10.1016/j.cbpa.2007.02.025
- Melanie H, Stueckler C, Hauer B, Stuermer R, Friedrich T, Breuer M, et al. 2008. Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1-3 from yeasts. Eur. J. Org. Chem. 2008: 1511-1516. https://doi.org/10.1002/ejoc.200701208
- W inkler CK, Tasnadi G, Clay D, Hall M, Faber K. 2012. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J. Biotechnol. 162: 381-389. https://doi.org/10.1016/j.jbiotec.2012.03.023
- Sch ittmayer M, Glieder A, Uhl MK, Winkler A, Zach S, Schrittwieser JH, et al. 2011. Old yellow enzyme-catalyzed dehydrogenation of saturated ketones. Adv. Synth. Catal. 353: 268-274. https://doi.org/10.1002/adsc.201000862
-
Stueckler C, Hall M, Ehammer H, Pointner E, Kroutil W, Macheroux P, et al. 2007. Stereocomplementary bioreduction of
${\alpha}$ ,${\beta}$ -unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol. Org. Lett. 9: 5409-5411. https://doi.org/10.1021/ol7019185 - Turrini NG, Hall M, Faber K. 2015. Enzymatics ynthesis of optically active lactones via asymmetric bioreduction using ene-reductases from the old yellow enzyme family. Adv. Synth. Catal. 357: 1861-1871. https://doi.org/10.1002/adsc.201500094
- Donk WACD, Zhao H. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426. https://doi.org/10.1016/S0958-1669(03)00094-6
- Endo T, Koizumi S. 2001. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv. Synth. Catal. 343: 521-526. https://doi.org/10.1002/1615-4169(200108)343:6/7<521::AID-ADSC521>3.0.CO;2-5
- Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. 2013. Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42: 6491-6533. https://doi.org/10.1039/c3cs00004d
- Betancor L, Berne C, Luckarifta HR, Spain JC. 2006. Coimmobilization of a redox enzyme and a cofactor regeneration system. Chem. Commun. 34: 3640-3642.
- Dicosimo R, Mcauliffe J, Poulose AJ, Bohlmann G. 2013. Industrial use of immobilized enzymes. Chem. Soc. Rev. 42: 6437-6474. https://doi.org/10.1039/c3cs35506c
- Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42: 6406-6436. https://doi.org/10.1039/c3cs35446f
- Wang Y, Zhang X, Han N, Wu Y, Wei D. 2018. Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. Int. J. Biol. Macromol. 120: 100-108. https://doi.org/10.1016/j.ijbiomac.2018.08.074
- Zucca P, Lafuente RF, Sanjust E. 2016. Agarose and its derivatives as supports for enzyme immobilization. Molecules 21: 1-25. https://doi.org/10.3390/molecules21010001
- Osuna Y, Sandoval J, Saade H, Lopez RG, Martinez JL, Colunga EM, et al. 2015. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38: 1437-1445. https://doi.org/10.1007/s00449-015-1385-8
- Krajewska B. 2004. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb. Technol. 35: 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013
- Li K, Chen ZB, Liu DL, Zhang L, Tang Z, Wang Z, et al. 2018. Design and synthesis study of the thermo-sensitive copolymer carrier of penicillin G acylase. Polym. Adv. Technol. 29: 1902-1912. https://doi.org/10.1002/pat.4299
- Li K, Liu XT, Zhang XF, Liu D, Zhang XY, Ma SM, et al. 2019. The engineering and immobilization of penicillin G acylase onto thermo-sensitive tri-block copolymer system. Polym. Adv. Technol. 30: 86-93. https://doi.org/10.1002/pat.4446
- Yilmaz E, Can K, Sezgin M, Yilmaz M. 2011. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresour. Technol. 102: 499-506. https://doi.org/10.1016/j.biortech.2010.08.083
- Hosseini SH, Hosseini SA, Zohreh N, Yaghoubi M, Pourjavadi A. 2018. Covalent immobilization of cellulase using magnetic poly (ionic liquid) support: improvement of the enzyme activity and stability. J. Agric. Food Chem. 66: 789-798. https://doi.org/10.1021/acs.jafc.7b03922
- Poojari Y, Clarson SJ. 2013. Thermal stability of Candida antarctica lipase B immobilized on macroporous acrylic resin particles in organic media. Biocatal. Agric. Biotechnol. 2: 7-11. https://doi.org/10.1016/j.bcab.2012.10.002
- Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P, et al. 2013. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 42: 6262-6276. https://doi.org/10.1039/c3cs35464d
- Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M. 2012. Valorization of biomass: deriving more value from waste. Science 337: 695-699. https://doi.org/10.1126/science.1218930
- Parveen K, Diane MB, Michael JD, Pieter S. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48: 3713-3729. https://doi.org/10.1021/ie801542g
- Li H, Xiao W, Xie P, Zheng L. 2018. Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme. Enzyme Microb. Technol. 109: 66-73. https://doi.org/10.1016/j.enzmictec.2017.09.013
- Tian X, Zhang S, Zheng L. 2016. Enzyme-Catalyzed Henry reaction in choline chloride-based deep eutectic solvents. J. Microbiol. Biotechnol. 26: 80-88. https://doi.org/10.4014/jmb.1506.06075
- Francisco M, Bruinhorst VDA, Kroon MC. 2012. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14: 2153-2157. https://doi.org/10.1039/c2gc35660k
- Lynam JG, Reza MT, Vasquez VR, Coronella CJ. 2012. Pretreatment of rice hulls by ionic liquid dissolution. Bioresour. Technol. 114: 629-636. https://doi.org/10.1016/j.biortech.2012.03.004
- Lyna m JG, Kumar N, Wong MJ. 2017. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238: 684-689. https://doi.org/10.1016/j.biortech.2017.04.079
- Javier RM, Rivas BDL, Rosario M, Guisan JM, Fernando LG. 2012. Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with in situ recycling of soluble cofactors. ChemCatChem 4: 1279-1288. https://doi.org/10.1002/cctc.201200146
- Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. 2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37: 790-802. https://doi.org/10.2144/04375RV01
- Barbosa O, Ortiz C, Murcia AB, Torres R, Rodrigues RC, Lafuente RF. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4: 1583-1600. https://doi.org/10.1039/C3RA45991H
- Wine Y, Hadar NC, Freeman A, Frolow F. 2007. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnol. Bioeng. 98: 711-718. https://doi.org/10.1002/bit.21459
- Brady D, Jordaan J. 2009. Advances in enzyme immobilization. Biotechnol. Lett. 31: 1639-1650. https://doi.org/10.1007/s10529-009-0076-4
- Morad M, Nowicka E, Douthwaite M, Iqbal S, Miedziak P, Edwards JK, et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catal. Sci. Technol. 7: 1928-1936. https://doi.org/10.1039/C7CY00184C
Cited by
- Enzymatic strategies for asymmetric synthesis vol.2, pp.4, 2019, https://doi.org/10.1039/d1cb00080b