참고문헌
- Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, et al. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87: 223-226. https://doi.org/10.1111/j.1399-3054.1993.tb00146.x
- Kaneda M, Mizutani K, Takahashi Y, Kurono G, Nishikawa Y. 1974. Lilioside A and B, two new glycerol glucosides isolated from Lilium longiflorum T hunb. Tetrahedron Lett. 15: 3937-3940. https://doi.org/10.1016/S0040-4039(01)92050-7
- Kaneda M, Mizutani K, Tanaka K. 1982. Lilioside C, a glycerol glucoside from Lilium lancifolium. Phytochemistry 21: 891-893. https://doi.org/10.1016/0031-9422(82)80087-3
- Curatolo W. 1987. The physical properties of glycolipids. Biochim. Biophys. Acta-Rev. 906: 111-136. https://doi.org/10.1016/0304-4157(87)90008-6
-
Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1996. 1-O-, 2-O-and 3-O-
${\beta}$ -glycosyl-snglycerols: Structure-anti-tumor-promoting activity relationship. Bioorg. Med. Chem. Lett. 6: 1187-1190. https://doi.org/10.1016/0960-894X(96)00196-5 -
Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1998. Inhibitory effects of fatty acid monoesters of 2-O-
${\beta}$ -D-glucosylglycerol on Epstein-Barr virus activation. Cancer Lett. 123: 83-86. https://doi.org/10.1016/S0304-3835(97)00410-2 -
Colombo D, Compostella F, Ronchetti F, Scala A, Toma L, Tokuda H, et al. 1999. Chemoenzymatic synthesis and antitumor promoting activity of 6'-and 3-esters of 2-O-
${\beta}$ -D-glucosylglycerol. Bioorg. Med. Chem. 7: 1867-1871. https://doi.org/10.1016/S0968-0896(99)00137-6 - Murakami N, Imamura H, Sakakibara J, Yamada N. 1990. Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 38: 3497-3499. https://doi.org/10.1248/cpb.38.3497
- Shirahashi H, Murakami N, Watanabe M, Nagatsu A, Sakakibara J, Tokuda H, et al. 1993. Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 41: 1664-1666. https://doi.org/10.1248/cpb.41.1664
- Murakami A, Nakamura Y, Koshimizu K, Ohigashi H. 1995. Glyceroglycolipids from Citrus hystrix, a traditional herb in Thailand, potently inhibit the tumor-promoting activity of 12-O-tetradecanoylphorbol 13-acetate in mouse skin. J. Agric. Food Chem. 43: 2779-2783. https://doi.org/10.1021/jf00058a043
- Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, et al. 1995. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40: 1433-1437. https://doi.org/10.1016/0031-9422(95)00458-J
- Boltje TJ, Buskas T, Boons G-J. 2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1: 611-622. https://doi.org/10.1038/nchem.399
- Marinone Albini F, Murelli C, Patritti G, Rovati M. 1994. A simple synthesis of glucosyl glycerols. Synth. Commun. 24: 1651-1661. https://doi.org/10.1080/00397919408010167
- Wickberg B. 1958. Synthesis of 1-glyceritol D-galactopyranosides. Acta Chem. Scand. 12: 1187-1201. https://doi.org/10.3891/acta.chem.scand.12-1187
- Barstrom M, Bengtsson M, Blixt O, Norberg T. 2000. New derivatives of reducing oligosaccharides and their use in enzymatic reactions: efficient synthesis of sialyl Lewis a and sialyl dimeric Lewis x glycoconjugates. Carbohydr. Res. 328: 525-531. https://doi.org/10.1016/S0008-6215(00)00128-2
-
Zeng X, Uzawa H. 2005. Convenient enzymatic synthesis of a p-nitrophenyl oligosaccharide series of sialyl N-acetyllactosamine, sialyl
$Le^x$ and relevant compounds. Carbohydr. Res. 340: 2469-2475. https://doi.org/10.1016/j.carres.2005.08.019 - Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644. https://doi.org/10.1016/S0959-440X(97)80072-3
-
Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R. 2003. Oligosaccharide synthesis by the hyperthermostable
${\beta}$ -glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microb. Technol. 33: 3-11. https://doi.org/10.1016/S0141-0229(03)00096-6 -
Park N-Y, Baek N-I, Cha J, Lee S-B, Auh J-H, Park C-S. 2005. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae
${\beta}$ -glycosidase. Carbohydr. Res. 340: 1089-1096. https://doi.org/10.1016/j.carres.2005.02.003 - Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. 2018. Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol. Adv. 36: 1540-1552. https://doi.org/10.1016/j.biotechadv.2018.06.010
- Jung D-H, Jung J-H, Seo D-H, Ha S-J, Kweon D-K, Park C-S. 2013. One-pot bioconversion of sucrose to trehalose using enzymatic sequential reactions in combined cross-linked enzyme aggregates. Bioresour. Technol. 130: 801-804. https://doi.org/10.1016/j.biortech.2012.12.162
- Cho H-K, Kim H-H, Seo D-H, Jung J-H, Park J-H, Baek N-I, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
- Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
-
Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, et al. 1999. Structure of raw starch-digesting Bacillus cereus
${\beta}$ -amylase complexed with maltose. Biochemistry. 38: 7050-7061. https://doi.org/10.1021/bi9829377 -
Seo D-H, Jung J-H, Ha S-J, Cho H-K, Jung D-H, Kim T-J, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to
${\alpha}$ -arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197. https://doi.org/10.1007/s00253-012-3905-7 -
De Roode M, Peters SW, Franssen MC, Van Padt AD, De Groot A, Boom RM. 2001. Optimization of production and downstream processing of the almond
${\beta}$ -glucosidase-mediated glucosylation of glycerol. Biotechnol. Bioeng. 72: 568-572. https://doi.org/10.1002/1097-0290(20010305)72:5<568::AID-BIT1021>3.0.CO;2-J -
Hinz SW, Verhoef R, Schols HA, Vincken J-P, Voragen AG. 2005. Type I arabinogalactan contains
${\beta}$ -D-Galp-(1${\rightarrow}$ 3)-${\beta}$ -D-Galp structural elements. Carbohydr. Res. 340: 2135-2143. https://doi.org/10.1016/j.carres.2005.07.003 - Jeong J-W, Seo D-H, Jung J-H, Park J-H, Baek N-I, Kim M-J, et al. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917. https://doi.org/10.1007/s12010-014-0889-z
- Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, et al. 2001. Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001: 875-896. https://doi.org/10.1002/1099-0690(200103)2001:5<875::AID-EJOC875>3.0.CO;2-R
- Seo S, Tomita Y, Tori K, Yoshimura Y. 1978. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 100: 3331-3339. https://doi.org/10.1021/ja00479a014
- Suhr R, Scheel O, Thiem J. 1998. Synthesis of glycosyl glycerols and related glycolipids. J. Carbohydr. Chem. 17: 937-968. https://doi.org/10.1080/07328309808007465
피인용 문헌
- Enzymatic synthesis of novel fructosylated compounds by Ffase from Schwanniomyces occidentalis in green solvents vol.11, pp.39, 2019, https://doi.org/10.1039/d1ra01391b
- New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-86568-6