DOI QR코드

DOI QR Code

Theracurmin Ameliorates Cognitive Dysfunctions in 5XFAD Mice by Improving Synaptic Function and Mitigating Oxidative Stress

  • Kim, Jihyun (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Kim, Jaehoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Huang, Zhouchi (College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea) ;
  • Goo, Nayeon (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Bae, Ho Jung (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Jeong, Yongwoo (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Park, Ho Jae (Department of Oriental Pharmaceutical Science, Kyung Hee University) ;
  • Cai, Mudan (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Cho, Kyungnam (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Jung, Seo Yun (Department of Life and Nanopharmaceutical Science, Kyung Hee University) ;
  • Bae, Soo Kyung (College of Pharmacy and Integrated Research Institute of Parmaceutical Sciences, The Catholic University of Korea) ;
  • Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
  • Received : 2019.03.13
  • Accepted : 2019.04.05
  • Published : 2019.05.01

Abstract

As the elderly population is increasing, Alzheimer's disease (AD) has become a global issue and many clinical trials have been conducted to evaluate treatments for AD. As these clinical trials have been conducted and have failed, the development of new theraphies for AD with fewer adverse effects remains a challenge. In this study, we examined the effects of Theracurmin on cognitive decline using 5XFAD mice, an AD mouse model. Theracurmin is more bioavailable form of curcumin, generated with submicron colloidal dispersion. Mice were treated with Theracurmin (100, 300 and 1,000 mg/kg) for 12 weeks and were subjected to the novel object recognition test and the Barnes maze test. Theracurmin-treated mice showed significant amelioration in recognition and spatial memories compared those of the vehicle-treated controls. In addition, the antioxidant activities of Theracurmin were investigated by measuring the superoxide dismutase (SOD) activity, malondialdehyde (MDA) and glutathione (GSH) levels. The increased MDA level and decreased SOD and GSH levels in the vehicle-treated 5XFAD mice were significantly reversed by the administration of Theracurmin. Moreover, we observed that Theracurmin administration elevated the expression levels of synaptic components, including synaptophysin and post synaptic density protein 95, and decreased the expression levels of ionized calcium-binding adapter molecule 1 (Iba-1), a marker of activated microglia. These results suggest that Theracurmin ameliorates cognitive function by increasing the expression of synaptic components and by preventing neuronal cell damage from oxidative stress or from the activation of microglia. Thus, Theracurmin would be useful for treating the cognitive dysfunctions observed in AD.

Keywords

References

  1. Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007) Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807-818. https://doi.org/10.1021/mp700113r
  2. Bakhtiari, M., Panahi, Y., Ameli, J. and Darvishi, B. (2017) Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed. Pharmacother. 93, 218-229. https://doi.org/10.1016/j.biopha.2017.06.010
  3. Barnes, C. A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74-104. https://doi.org/10.1037/h0077579
  4. Brown, G. C. (2015) Living too long: the current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy. EMBO Rep. 16, 137-141. https://doi.org/10.15252/embr.201439518
  5. Calhoun, M. E., Jucker, M., Martin, L. J., Thinakaran, G., Price, D. L. and Mouton, P. R. (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J. Neurocytol. 25, 821-828. https://doi.org/10.1007/BF02284844
  6. Canales-Aguirre, A. A., Gomez-Pinedo, U. A., Luquin, S., Ramirez-Herrera, M. A., Mendoza-Magana, M. L. and Feria-Velasco, A. (2012) Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain. Nutr. Neurosci. 15, 62-69. https://doi.org/10.1179/1476830511Y.0000000034
  7. Cousins, M., Adelberg, J., Chen, F. and Rieck, J. (2007) Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind. Crop. Prod. 25, 129-135. https://doi.org/10.1016/j.indcrop.2006.08.004
  8. Dere, E., Huston, J. P. and De Souza Silva, M. A. (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673-704. https://doi.org/10.1016/j.neubiorev.2007.01.005
  9. Giubilei, F. (2016) Beyond Cholinesterase inhibition: anti-inflammatory role and pharmacological profile of current drug therapy for Alzheimer's disease. CNS Neurol. Disord. Drug Targets 15, 683-689. https://doi.org/10.2174/1871527315666160518122917
  10. Grady, C. L., Furey, M. L., Pietrini, P., Horwitz, B. and Rapoport, S. I. (2001) Altered brain functional connectivity and impaired shortterm memory in Alzheimer's disease. Brain 124, 739-756. https://doi.org/10.1093/brain/124.4.739
  11. Grinan-Ferre, C., Izquierdo, V., Otero, E., Puigoriol-Illamola, D., Corpas, R., Sanfeliu, C., Ortuno-Sahagun, D. and Pallas, M. (2018) Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front. Cell. Neurosci. 12, 224. https://doi.org/10.3389/fncel.2018.00224
  12. Gulland, A. (2012) Number of people with dementia will reach 65.7 million by 2030, says report. BMJ 344, e2604. https://doi.org/10.1136/bmj.e2604
  13. Gyoneva, S., Swanger, S. A., Zhang, J., Weinshenker, D. and Traynelis, S. F. (2016) Altered motility of plaque-associated microglia in a model of Alzheimer's disease. Neuroscience 330, 410-420. https://doi.org/10.1016/j.neuroscience.2016.05.061
  14. Hashimoto, M., Imamura, T., Tanimukai, S., Kazui, H. and Mori, E. (2000) Urinary incontinence: an unrecognised adverse effect with donepezil. Lancet 356, 568. https://doi.org/10.1016/S0140-6736(00)02588-5
  15. Hauss-Wegrzyniak, B., Lynch, M. A., Vraniak, P. D. and Wenk, G. L. (2002) Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol. 176, 336-41. https://doi.org/10.1006/exnr.2002.7966
  16. Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A. and Wirths, O. (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 33, 196.e29-196.e40. https://doi.org/10.1016/j.neurobiolaging.2010.05.027
  17. Karran, E. and De Strooper, B. (2016) The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139 Suppl 2, 237-252. https://doi.org/10.1111/jnc.13632
  18. Kim, J. M., Kim, D. H., Lee, Y., Park, S. J. and Ryu, J. H. (2014) Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory. Brain Res. 1552, 17-25. https://doi.org/10.1016/j.brainres.2014.01.024
  19. Kingston, A., Wohland, P., Wittenberg, R., Robinson, L., Brayne, C., Matthews, F. E. and Jagger, C.; Cognitive Function and Ageing Studies collaboration (2017) Is late-life dependency increasing or not? A comparison of the Cognitive Function and Ageing Studies (CFAS). Lancet 390, 1676-1684. https://doi.org/10.1016/S0140-6736(17)31575-1
  20. Kitazawa, M., Cheng, D., Tsukamoto, M. R., Koike, M. A., Wes, P. D., Vasilevko, V., Cribbs, D. H. and LaFerla, F. M. (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J. Immunol. 187, 6539-6549. https://doi.org/10.4049/jimmunol.1100620
  21. McClure, R., Yanagisawa, D., Stec, D., Abdollahian, D., Koktysh, D., Xhillari, D., Jaeger, R., Stanwood, G., Chekmenev, E. and Tooyama, I. (2015) Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. J. Alzheimers Dis. 44, 283-295. https://doi.org/10.3233/JAD-140798
  22. Meyer, D., Bonhoeffer, T. and Scheuss, V. (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430-443. https://doi.org/10.1016/j.neuron.2014.02.031
  23. Mishra, S. and Palanivelu, K. (2008) The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann. Indian Acad. Neurol. 11, 13-19. https://doi.org/10.4103/0972-2327.40220
  24. Morellini, F. (2013) Spatial memory tasks in rodents: what do they model? Cell Tissue Res. 354, 273-286. https://doi.org/10.1007/s00441-013-1668-9
  25. Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R. and Vassar, R. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129-10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
  26. Park, S. J., Lee, J. Y., Kim, S. J., Choi, S. Y., Yune, T. Y. and Ryu, J. H. (2015) Corrigendum: Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 5, 14025. https://doi.org/10.1038/srep14025
  27. Rosenbaum, R. S., Furey, M. L., Horwitz, B. and Grady, C. L. (2010) Altered connectivity among emotion-related brain regions during short-term memory in Alzheimer's disease. Neurobiol. Aging 31, 780-786. https://doi.org/10.1016/j.neurobiolaging.2008.06.002
  28. Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K. and Morimoto, T. (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 34, 660-665. https://doi.org/10.1248/bpb.34.660
  29. Schmitt, U., Tanimoto, N., Seeliger, M., Schaeffel, F. and Leube, R. E. (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162, 234-243. https://doi.org/10.1016/j.neuroscience.2009.04.046
  30. Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y. and Hong, J. T. (2015) Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38, 2106-2119. https://doi.org/10.1007/s12272-015-0648-x
  31. Shintani, E. Y. and Uchida, K. M. (1997) Donepezil: an anticholinesterase inhibitor for Alzheimer's disease. Am. J. Health Syst. Pharm. 54, 2805-2810. https://doi.org/10.1093/ajhp/54.24.2805
  32. Small, G. W., Siddarth, P., Li, Z., Miller, K. J., Ercoli, L., Emerson, N. D., Martinez, J., Wong, K. P., Liu, J., Merrill, D. A., Chen, S. T., Henning, S. M., Satyamurthy, N., Huang, S. C., Heber, D. and Barrio, J. R. (2018) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 26, 266-277. https://doi.org/10.1016/j.jagp.2017.10.010
  33. Spangenberg, E. E., Lee, R. J., Najafi, A. R., Rice, R. A., Elmore, M. R., Blurton-Jones, M., West, B. L. and Green, K. N. (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139, 1265-1281. https://doi.org/10.1093/brain/aww016
  34. Tampellini, D., Capetillo-Zarate, E., Dumont, M., Huang, Z., Yu, F., Lin, M. T. and Gouras, G. K. (2010) Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J. Neurosci. 30, 14299-14304. https://doi.org/10.1523/JNEUROSCI.3383-10.2010
  35. Tharakan, B., Hunter, F. A., Smythe, W. R. and Childs, E. W. (2010) Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clin. Exp. Pharmacol. Physiol. 37, 939-944. https://doi.org/10.1111/j.1440-1681.2010.05414.x
  36. Toda, S., Miyase, T., Arichi, H., Tanizawa, H. and Takino, Y. (1985) Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. (Tokyo) 33, 1725-1728. https://doi.org/10.1248/cpb.33.1725
  37. Vilalta, A. and Brown, G. C. (2014) Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J. Neuroinflammation 11, 58. https://doi.org/10.1186/1742-2094-11-58
  38. Walker, J. M. (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5-8.
  39. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A. and Cole, G. M. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901. https://doi.org/10.1074/jbc.M404751200
  40. Yiu, A. P., Rashid, A. J. and Josselyn, S. A. (2011) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 36, 2169-2186. https://doi.org/10.1038/npp.2011.107
  41. Yu, S. Y., Zhang, M., Luo, J., Zhang, L., Shao, Y. and Li, G. (2013) Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 47-53. https://doi.org/10.1016/j.pnpbp.2013.05.001
  42. Zhang, L., Fang, Y., Xu, Y., Lian, Y., Xie, N., Wu, T., Zhang, H., Sun, L., Zhang, R. and Wang, Z. (2015) Curcumin improves amyloid beta-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10, e0131525. https://doi.org/10.1371/journal.pone.0131525
  43. Zheng, K., Dai, X., Xiao, N., Wu, X., Wei, Z., Fang, W., Zhu, Y., Zhang, J. and Chen, X. (2017) Curcumin ameliorates memory decline via inhibiting BACE1 expression and beta-amyloid pathology in 5xFAD transgenic mice. Mol. Neurobiol. 54, 1967-1977. https://doi.org/10.1007/s12035-016-9802-9
  44. Ziehn, M. O., Avedisian, A. A., Tiwari-Woodruff, S. and Voskuhl, R. R. (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab. Invest. 90, 774-786. https://doi.org/10.1038/labinvest.2010.6

Cited by

  1. The effect of maslinic acid on cognitive dysfunction induced by cholinergic blockade in mice vol.177, pp.14, 2020, https://doi.org/10.1111/bph.15042
  2. Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer’s amyloidosis vol.13, pp.1, 2019, https://doi.org/10.1186/s13195-021-00769-9