References
- Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007) Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807-818. https://doi.org/10.1021/mp700113r
- Bakhtiari, M., Panahi, Y., Ameli, J. and Darvishi, B. (2017) Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed. Pharmacother. 93, 218-229. https://doi.org/10.1016/j.biopha.2017.06.010
- Barnes, C. A. (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74-104. https://doi.org/10.1037/h0077579
- Brown, G. C. (2015) Living too long: the current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy. EMBO Rep. 16, 137-141. https://doi.org/10.15252/embr.201439518
- Calhoun, M. E., Jucker, M., Martin, L. J., Thinakaran, G., Price, D. L. and Mouton, P. R. (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J. Neurocytol. 25, 821-828. https://doi.org/10.1007/BF02284844
- Canales-Aguirre, A. A., Gomez-Pinedo, U. A., Luquin, S., Ramirez-Herrera, M. A., Mendoza-Magana, M. L. and Feria-Velasco, A. (2012) Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain. Nutr. Neurosci. 15, 62-69. https://doi.org/10.1179/1476830511Y.0000000034
- Cousins, M., Adelberg, J., Chen, F. and Rieck, J. (2007) Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind. Crop. Prod. 25, 129-135. https://doi.org/10.1016/j.indcrop.2006.08.004
- Dere, E., Huston, J. P. and De Souza Silva, M. A. (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673-704. https://doi.org/10.1016/j.neubiorev.2007.01.005
- Giubilei, F. (2016) Beyond Cholinesterase inhibition: anti-inflammatory role and pharmacological profile of current drug therapy for Alzheimer's disease. CNS Neurol. Disord. Drug Targets 15, 683-689. https://doi.org/10.2174/1871527315666160518122917
- Grady, C. L., Furey, M. L., Pietrini, P., Horwitz, B. and Rapoport, S. I. (2001) Altered brain functional connectivity and impaired shortterm memory in Alzheimer's disease. Brain 124, 739-756. https://doi.org/10.1093/brain/124.4.739
- Grinan-Ferre, C., Izquierdo, V., Otero, E., Puigoriol-Illamola, D., Corpas, R., Sanfeliu, C., Ortuno-Sahagun, D. and Pallas, M. (2018) Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front. Cell. Neurosci. 12, 224. https://doi.org/10.3389/fncel.2018.00224
- Gulland, A. (2012) Number of people with dementia will reach 65.7 million by 2030, says report. BMJ 344, e2604. https://doi.org/10.1136/bmj.e2604
- Gyoneva, S., Swanger, S. A., Zhang, J., Weinshenker, D. and Traynelis, S. F. (2016) Altered motility of plaque-associated microglia in a model of Alzheimer's disease. Neuroscience 330, 410-420. https://doi.org/10.1016/j.neuroscience.2016.05.061
- Hashimoto, M., Imamura, T., Tanimukai, S., Kazui, H. and Mori, E. (2000) Urinary incontinence: an unrecognised adverse effect with donepezil. Lancet 356, 568. https://doi.org/10.1016/S0140-6736(00)02588-5
- Hauss-Wegrzyniak, B., Lynch, M. A., Vraniak, P. D. and Wenk, G. L. (2002) Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp. Neurol. 176, 336-41. https://doi.org/10.1006/exnr.2002.7966
- Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A. and Wirths, O. (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 33, 196.e29-196.e40. https://doi.org/10.1016/j.neurobiolaging.2010.05.027
- Karran, E. and De Strooper, B. (2016) The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139 Suppl 2, 237-252. https://doi.org/10.1111/jnc.13632
- Kim, J. M., Kim, D. H., Lee, Y., Park, S. J. and Ryu, J. H. (2014) Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory. Brain Res. 1552, 17-25. https://doi.org/10.1016/j.brainres.2014.01.024
- Kingston, A., Wohland, P., Wittenberg, R., Robinson, L., Brayne, C., Matthews, F. E. and Jagger, C.; Cognitive Function and Ageing Studies collaboration (2017) Is late-life dependency increasing or not? A comparison of the Cognitive Function and Ageing Studies (CFAS). Lancet 390, 1676-1684. https://doi.org/10.1016/S0140-6736(17)31575-1
- Kitazawa, M., Cheng, D., Tsukamoto, M. R., Koike, M. A., Wes, P. D., Vasilevko, V., Cribbs, D. H. and LaFerla, F. M. (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer's disease model. J. Immunol. 187, 6539-6549. https://doi.org/10.4049/jimmunol.1100620
- McClure, R., Yanagisawa, D., Stec, D., Abdollahian, D., Koktysh, D., Xhillari, D., Jaeger, R., Stanwood, G., Chekmenev, E. and Tooyama, I. (2015) Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. J. Alzheimers Dis. 44, 283-295. https://doi.org/10.3233/JAD-140798
- Meyer, D., Bonhoeffer, T. and Scheuss, V. (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82, 430-443. https://doi.org/10.1016/j.neuron.2014.02.031
- Mishra, S. and Palanivelu, K. (2008) The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann. Indian Acad. Neurol. 11, 13-19. https://doi.org/10.4103/0972-2327.40220
- Morellini, F. (2013) Spatial memory tasks in rodents: what do they model? Cell Tissue Res. 354, 273-286. https://doi.org/10.1007/s00441-013-1668-9
- Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R. and Vassar, R. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129-10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006
- Park, S. J., Lee, J. Y., Kim, S. J., Choi, S. Y., Yune, T. Y. and Ryu, J. H. (2015) Corrigendum: Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 5, 14025. https://doi.org/10.1038/srep14025
- Rosenbaum, R. S., Furey, M. L., Horwitz, B. and Grady, C. L. (2010) Altered connectivity among emotion-related brain regions during short-term memory in Alzheimer's disease. Neurobiol. Aging 31, 780-786. https://doi.org/10.1016/j.neurobiolaging.2008.06.002
- Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., Wada, H., Katanasaka, Y., Kakeya, H., Fujita, M., Hasegawa, K. and Morimoto, T. (2011) Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 34, 660-665. https://doi.org/10.1248/bpb.34.660
- Schmitt, U., Tanimoto, N., Seeliger, M., Schaeffel, F. and Leube, R. E. (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162, 234-243. https://doi.org/10.1016/j.neuroscience.2009.04.046
- Shadfar, S., Hwang, C. J., Lim, M. S., Choi, D. Y. and Hong, J. T. (2015) Involvement of inflammation in Alzheimer's disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch. Pharm. Res. 38, 2106-2119. https://doi.org/10.1007/s12272-015-0648-x
- Shintani, E. Y. and Uchida, K. M. (1997) Donepezil: an anticholinesterase inhibitor for Alzheimer's disease. Am. J. Health Syst. Pharm. 54, 2805-2810. https://doi.org/10.1093/ajhp/54.24.2805
- Small, G. W., Siddarth, P., Li, Z., Miller, K. J., Ercoli, L., Emerson, N. D., Martinez, J., Wong, K. P., Liu, J., Merrill, D. A., Chen, S. T., Henning, S. M., Satyamurthy, N., Huang, S. C., Heber, D. and Barrio, J. R. (2018) Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry 26, 266-277. https://doi.org/10.1016/j.jagp.2017.10.010
- Spangenberg, E. E., Lee, R. J., Najafi, A. R., Rice, R. A., Elmore, M. R., Blurton-Jones, M., West, B. L. and Green, K. N. (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139, 1265-1281. https://doi.org/10.1093/brain/aww016
- Tampellini, D., Capetillo-Zarate, E., Dumont, M., Huang, Z., Yu, F., Lin, M. T. and Gouras, G. K. (2010) Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice. J. Neurosci. 30, 14299-14304. https://doi.org/10.1523/JNEUROSCI.3383-10.2010
- Tharakan, B., Hunter, F. A., Smythe, W. R. and Childs, E. W. (2010) Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clin. Exp. Pharmacol. Physiol. 37, 939-944. https://doi.org/10.1111/j.1440-1681.2010.05414.x
- Toda, S., Miyase, T., Arichi, H., Tanizawa, H. and Takino, Y. (1985) Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. (Tokyo) 33, 1725-1728. https://doi.org/10.1248/cpb.33.1725
- Vilalta, A. and Brown, G. C. (2014) Deoxyglucose prevents neurodegeneration in culture by eliminating microglia. J. Neuroinflammation 11, 58. https://doi.org/10.1186/1742-2094-11-58
- Walker, J. M. (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5-8.
- Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A. and Cole, G. M. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901. https://doi.org/10.1074/jbc.M404751200
- Yiu, A. P., Rashid, A. J. and Josselyn, S. A. (2011) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 36, 2169-2186. https://doi.org/10.1038/npp.2011.107
- Yu, S. Y., Zhang, M., Luo, J., Zhang, L., Shao, Y. and Li, G. (2013) Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 45, 47-53. https://doi.org/10.1016/j.pnpbp.2013.05.001
- Zhang, L., Fang, Y., Xu, Y., Lian, Y., Xie, N., Wu, T., Zhang, H., Sun, L., Zhang, R. and Wang, Z. (2015) Curcumin improves amyloid beta-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10, e0131525. https://doi.org/10.1371/journal.pone.0131525
- Zheng, K., Dai, X., Xiao, N., Wu, X., Wei, Z., Fang, W., Zhu, Y., Zhang, J. and Chen, X. (2017) Curcumin ameliorates memory decline via inhibiting BACE1 expression and beta-amyloid pathology in 5xFAD transgenic mice. Mol. Neurobiol. 54, 1967-1977. https://doi.org/10.1007/s12035-016-9802-9
- Ziehn, M. O., Avedisian, A. A., Tiwari-Woodruff, S. and Voskuhl, R. R. (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab. Invest. 90, 774-786. https://doi.org/10.1038/labinvest.2010.6
Cited by
- The effect of maslinic acid on cognitive dysfunction induced by cholinergic blockade in mice vol.177, pp.14, 2020, https://doi.org/10.1111/bph.15042
- Preservation of dendritic spine morphology and postsynaptic signaling markers after treatment with solid lipid curcumin particles in the 5xFAD mouse model of Alzheimer’s amyloidosis vol.13, pp.1, 2019, https://doi.org/10.1186/s13195-021-00769-9