DOI QR코드

DOI QR Code

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho (System Toxicology Research Center, Korea Institute of Toxicology) ;
  • Hwang, Sung-Hee (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Cho, Hyun-Soo (Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2018.07.17
  • Accepted : 2018.08.16
  • Published : 2019.05.01

Abstract

Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Keywords

References

  1. Agianian, B. and Gavathiotis, E. (2018) Current insights of BRAF inhibitors in cancer. J. Med. Chem. 61, 5775-5793. https://doi.org/10.1021/acs.jmedchem.7b01306
  2. Ahn, J.-H. and Lee, M. (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol. Ther. (Seoul) 21, 114-120. https://doi.org/10.4062/biomolther.2013.012
  3. Ahn, J. H., Eum, K. H. and Lee, M. (2009) The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol. Cell. Biochem. 332, 189-197. https://doi.org/10.1007/s11010-009-0191-5
  4. Ahn, J. H., Han, B. I. and Lee, M. (2015) Induction of resistance to BRAF inhibitor is associated with the inability of Spry2 to inhibit BRAF-V600E activity in BRAF mutant cells. Biomol. Ther. (Seoul) 23, 320-326. https://doi.org/10.4062/biomolther.2015.007
  5. Arozarena, I. and Wellbrock, C. (2017) Overcoming resistance to BRAF inhibitors. Ann. Transl. Med. 5, 387. https://doi.org/10.21037/atm.2017.06.09
  6. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29.
  7. Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pages, F., Trajanoski, Z. and Galon, J. (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. https://doi.org/10.1093/bioinformatics/btp101
  8. Bollag, G., Hirth, P., Tsai, J., Zhang, J., Ibrahim, P. N., Cho, H., Spevak, W., Zhang, C., Zhang, Y., Habets, G., Burton, E. A., Wong, B., Tsang, G., West, B. L., Powell, B., Shellooe, R., Marimuthu, A., Nguyen, H., Zhang, K. Y., Artis, D. R., Schlessinger, J., Su, F., Higgins, B., Iyer, R., D’Andrea, K., Koehler, A., Stumm, M., Lin, P. S., Lee, R. J., Grippo, J., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., Chapman, P. B., Flaherty, K. T., Xu, X., Nathanson, K. L. and Nolop, K. (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596-599. https://doi.org/10.1038/nature09454
  9. Cancer Genome Atlas Network. (2015) Genomic classification of cutaneous melanoma. Cell 161, 1681-1696. https://doi.org/10.1016/j.cell.2015.05.044
  10. Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. and Futreal, P. A. (2002) Mutations of the BRAF gene in human cancer. Nature 417, 949-954. https://doi.org/10.1038/nature00766
  11. Dobbelstein, M. and Moll, U. (2014) Targeting tumour-supportive cellular machineries in anticancer drug development. Nat. Rev. Drug Discov. 13, 179-196. https://doi.org/10.1038/nrd4201
  12. Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K. and Chapman, P. B. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809-819. https://doi.org/10.1056/NEJMoa1002011
  13. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M. A. (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263. https://doi.org/10.1016/S0092-8674(00)80919-8
  14. Halaban, R., Zhang, W., Bacchiocchi, A., Cheng, E., Parisi, F., Ariyan, S., Krauthammer, M., McCusker, J. P., Kluger, Y. and Sznol, M. (2010) PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 23, 190-200. https://doi.org/10.1111/j.1755-148X.2010.00685.x
  15. Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., Ludlam, M. J., Stokoe, D., Gloor, S. L., Vigers, G., Morales, T., Aliagas, I., Liu, B., Sideris, S., Hoeflich, K. P., Jaiswal, B. S., Seshagiri, S., Koeppen, H., Belvin, M., Friedman, L.S. and Malek, S. (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435. https://doi.org/10.1038/nature08833
  16. Heidorn, S. J., Milagre, C., Whittaker, S., Nourry, A., Niculescu-Duvas, I., Dhomen, N., Hussain, J., Reis-Filho, J. S., Springer, C. J., Pritchard, C. and Marais, R. (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221. https://doi.org/10.1016/j.cell.2009.12.040
  17. Holderfield, M., Deuker, M. M., McCormick, F. and McMahon, M. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455-467. https://doi.org/10.1038/nrc3760
  18. Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1-13. https://doi.org/10.1093/nar/gkn923
  19. Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. https://doi.org/10.1038/nprot.2008.211
  20. Ji, Z., Erin Chen, Y., Kumar, R., Taylor, M., Jenny Njauw, C. N., Miao, B., Frederick, D. T., Wargo, J. A., Flaherty, K. T., Jonsson, G. and Tsao, H. (2015) MITF Modulates Therapeutic Resistance through EGFR Signaling. J. Invest. Dermatol. 135, 1863-1872. https://doi.org/10.1038/jid.2015.105
  21. Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C. and Garraway, L. A. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972. https://doi.org/10.1038/nature09627
  22. Kim, J. H., Ahn, J. H. and Lee, M. (2017) Upregulation of microRNA-1246 is associated with BRAF inhibitor resistance in melanoma cells with mutant BRAF. Cancer Res. Treat. 49, 947-959. https://doi.org/10.4143/crt.2016.280
  23. Kim, Y. K., Ahn, S. K. and Lee, M. (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett. 320, 215-224. https://doi.org/10.1016/j.canlet.2012.03.006
  24. Konieczkowski, D. J., Johannessen, C. M., Abudayyeh, O., Kim, J. W., Cooper, Z. A., Piris, A., Frederick, D. T., Barzily-Rokni, M., Straussman, R., Haq, R., Fisher, D. E., Mesirov, J. P., Hahn, W. C., Flaherty, K. T., Wargo, J. A., Tamayo, P. and Garraway, L. A.. (2014) A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816-827. https://doi.org/10.1158/2159-8290.CD-13-0424
  25. Lu, H., Tran, L., Park, Y., Chen, I., Lan, J., Xie, Y. and Semenza, G. L. (2018) Reciprocal regulation of DUSP9 and DUSP16 expression by HIF-1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment. Cancer Res. 78, 4191-4202. https://doi.org/10.1158/0008-5472.CAN-18-0270
  26. Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet. 12, 671-682. https://doi.org/10.1038/nrg3068
  27. Pattani, K. M., Soudry, E., Glazer, C. A., Ochs, M. F., Wang, H., Schussel, J., Sun, W., Hennessey, P., Mydlarz, W., Loyo, M., Demokan, S., Smith, I. M. and Califano, J. A. (2012) MAGEB2 is activated by promoter demethylation in head and neck squamous cell carcinoma. PLoS ONE 7, e45534. https://doi.org/10.1371/journal.pone.0045534
  28. Rapino, F., Delaunay, S., Rambow, F., Zhou, Z., Tharun, L., De Tullio, P., Sin, O., Shostak, K., Schmitz, S., Piepers, J., Ghesquiere, B., Karim, L., Charloteaux, B., Jamart, D., Florin, A., Lambert, C., Rorive, A., Jerusalem, G., Leucci, E., Dewaele, M., Vooijs, M., Leidel, S. A., Georges, M., Voz, M., Peers, B., Buttner, R., Marine, J. C., Chariot, A. and Close, P. (2018) Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature 558, 605-609. https://doi.org/10.1038/s41586-018-0243-7
  29. Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., Haydu, L. E., Mijatov, B., Becker, T. M., Boyd, S. C., Howle, J., Saw, R., Thompson, J. F., Kefford, R. F., Scolyer, R. A. and Long, G. V. (2014) BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965-1977. https://doi.org/10.1158/1078-0432.CCR-13-3122
  30. Shi, H., Hugo, W., Kong, X., Hong, A., Koya, R. C., Moriceau, G., Chodon, T., Guo, R., Johnson, D. B., Dahlman, K. B., Kelley, M. C., Kefford, R. F., Chmielowski, B., Glaspy, J. A., Sosman, J. A., van Baren, N., Long, G. V., Ribas, A. and Lo, R. S. (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80-93. https://doi.org/10.1158/2159-8290.CD-13-0642
  31. Tripathi, S. C., Fahrmann, J. F., Celiktas, M., Aguilar, M., Marini, K. D., Jolly, M. K., Katayama, H., Wang, H., Murage, E. N., Dennison, J. B., Watkins, D. N., Levine, H., Ostrin, E. J., Taguchi, A. and Hanash, S. M. (2017) MCAM mediates chemoresistance in small-cell lung cancer via the PI3K/AKT/SOX2 signaling pathway. Cancer Res. 77, 4414-4425. https://doi.org/10.1158/0008-5472.CAN-16-2874
  32. van Duin, M., Broyl, A., de Knegt, Y., Goldschmidt, H., Richardson, P. G., Hop, W. C., van der Holt, B., Joseph-Pietras, D., Mulligan, G., Neuwirth, R., Sahota, S. S. and Sonneveld, P. (2011) Cancer testis antigens in newly diagnosed and relapse multiple myeloma: prognostic markers and potential targets for immunotherapy. Haematologica 96, 1662-1669. https://doi.org/10.3324/haematol.2010.037978
  33. Verfaillie, A., Imrichova, H., Atak, Z. K., Dewaele, M., Rambow, F., Hulselmans, G., Christiaens, V., Svetlichnyy, D., Luciani, F., Van den Mooter, L., Claerhout, S., Fiers, M., Journe, F., Ghanem, G. E., Herrmann, C., Halder, G., Marine, J. C. and Aerts, S. (2015) Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 6, 6683. https://doi.org/10.1038/ncomms7683
  34. Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., Wubbenhorst, B., Xu, X., Gimotty, P. A., Kee, D., Santiago-Walker, A. E., Letrero, R., D’Andrea, K., Pushparajan, A., Hayden, J. E., Brown, K. D., Laquerre, S., McArthur, G. A., Sosman, J. A., Nathanson, K. L. and Herlyn, M. (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683-695. https://doi.org/10.1016/j.ccr.2010.11.023
  35. Zhang, C., Spevak, W., Zhang, Y., Burton, E. A., Ma, Y., Habets, G., Zhang, J., Lin, J., Ewing, T., Matusow, B., Tsang, G., Marimuthu, A., Cho, H., Wu, G., Wang, W., Fong, D., Nguyen, H., Shi, S., Womack, P., Nespi, M., Shellooe, R., Carias, H., Powell, B., Light, E., Sanftner, L., Walters, J., Tsai, J., West, B. L., Visor, G., Rezaei, H., Lin, P. S., Nolop, K., Ibrahim, P. N., Hirth, P. and Bollag, G. (2015) RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583-586. https://doi.org/10.1038/nature14982

Cited by

  1. Upregulation of S100A9 contributes to the acquired resistance to BRAF inhibitors vol.41, pp.11, 2019, https://doi.org/10.1007/s13258-019-00856-0
  2. Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field vol.20, pp.23, 2019, https://doi.org/10.3390/ijms20235847
  3. Functional and transcriptomic characterization of cisplatin-resistant AGS and MKN-28 gastric cancer cell lines vol.15, pp.1, 2019, https://doi.org/10.1371/journal.pone.0228331
  4. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review vol.12, pp.10, 2019, https://doi.org/10.3390/cancers12102801
  5. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation vol.9, pp.12, 2020, https://doi.org/10.3390/antiox9121259
  6. Pan-Cancer Transcriptional Models Predicting Chemosensitivity in Human Tumors vol.20, 2021, https://doi.org/10.1177/11769351211002494
  7. Cellular processes involved in RAW 264.7 macrophages exposed to NPFF: A transcriptional study vol.136, 2019, https://doi.org/10.1016/j.peptides.2020.170469
  8. Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF vol.12, pp.5, 2019, https://doi.org/10.3390/genes12050705
  9. Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094456
  10. PTENP1-AS contributes to BRAF inhibitor resistance and is associated with adverse clinical outcome in stage III melanoma vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-89389-9
  11. Molecular Alterations Associated with Acquired Drug Resistance during Combined Treatment with Encorafenib and Binimetinib in Melanoma Cell Lines vol.13, pp.23, 2019, https://doi.org/10.3390/cancers13236058