References
- Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. and Begley, D. J. (2010) Structure and function of the blood-brain barrier. Neurobiol. Dis. 37,13-25. https://doi.org/10.1016/j.nbd.2009.07.030
-
Andre, P., Debray, M., Scherrmann, J. M. and Cisternino, S. (2009) Clonidine transport at the mouse blood-brain barrier by a new
$H^+$ antiporter that interacts with addictive drugs. J. Cereb. Blood Flow Metab. 29, 1293-304. https://doi.org/10.1038/jcbfm.2009.54 - Bickel, U., Schumacher, O. P., Kang, Y. S. and Voigt, K. (1996) Poor permeability of morphine 3-glucuronide and morphine 6-glucuronic through the blood-brain barrier in the rat. J. Pharmacol. Exp. Ther. 278,107-113.
- Bostrom, E., Simonsson, U. S. and Hammarlund-Udenaes, M. (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab. Dispos. 34, 1624-1631. https://doi.org/10.1124/dmd.106.009746
- Chapy, H., Smirnova, M., Andre, P., Schlatter, J., Chiadmi, F., Couraud, P. O., Scherrmann, J. M., Decleves, X. and Cisternino, S. (2014) Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability. Int. J. Neuropsychopharmacol. 18, 1-10.
- Cisternino, S., Chapy, H., Andre, P., Smirnova, M., Debray, M. and Scherrmann, J. M. (2013) Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J. 15, 299-307. https://doi.org/10.1208/s12248-012-9434-6
- Higuchi, K., Kitamura, A., Okura, T. and Deguchi, Y. (2015) Memantine transport by a proton-coupled organic cation antiporter in hCMEC/D3 cells, an in vitro human blood-brain barrier model. Drug Metab. Pharmacokinet. 30, 182-187. https://doi.org/10.1016/j.dmpk.2014.12.006
-
Himaya, S. W., Ryu, B., Qian, Z. J. and Kim, S. K. (2012) Paeonol from Hippocampus kudaBleeler suppressed the neuro-inflammatory responses in vitro via NF-
${\kappa}$ B and MAPK signaling pathways. Toxicol. In Vitro. 26, 878-887. https://doi.org/10.1016/j.tiv.2012.04.022 - Hosoya, K., Makihara, A., Tsujikawa, Y., Yoneyama, D., Mori, S., Terasaki, T., Akanuma, S., Tomi, M. and Tachikawa, M. (2009) Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J. Pharmacol. Exp. Ther. 329, 87-93. https://doi.org/10.1124/jpet.108.146381
-
Kang, Y. S., Boado, R. J. and Pardrodge, W. M. (1995) Pharmacokinetic and the organ clearance of A 3'-Biotinylaed, internally [
$^{32}P$ ]-labeled phosphodiester oligodeoxynucleotide coupled to a neutral avidin/monoclonal antibody conjugate. Drug. Metab. Dispos. 23, 55-59. - Kang, Y. S. and Park, J. H. (2000) Brain uptake and the analgesic effect oxytocin its usefulness as an analgesic agent. Arch. Pharm. Res. 23, 391-395. https://doi.org/10.1007/BF02975453
- Kang, Y. S., Lee, K. E., Lee, N. Y. and Terasaki, T. (2005) Donepezil tacrine and alpha-Phenyl-n-tert-Butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell line (TR-BBB). Arch. Pharm. Res. 28, 443-450. https://doi.org/10.1007/BF02977674
- Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K. and Terasaki, T. (2002) Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J. Neurochem. 83, 1188-1195. https://doi.org/10.1046/j.1471-4159.2002.01223.x
- Kitamura, A., Higuchi, K., Okura, T. and Deguchi, Y. (2014) Transport characteristics of tramadol in the blood-brain barrier. J. Pharm. Sci. 103, 3335-3341. https://doi.org/10.1002/jps.24129
-
Kooijmans, S. A., Senyschyn, D., Mezhiselvam, M. M., Morizzi, J., Charman, S. A., Weksler, B., Romero, I. A., Couraud, P. O. and Nicolazzo, J. A. (2012) The involvement of a
$Na^+$ - and$Cl^-$ -dependent transporter in the brain uptake of amantadine and rimantadine. Mol. Pharm. 9, 883-893. https://doi.org/10.1021/mp2004127 - Kubo, Y., Kusagawa, Y., Tachikawa, M., Akanuma, S. and Hosoya, K. (2013a) Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm. Res. 30, 847-856. https://doi.org/10.1007/s11095-012-0926-y
- Kubo, Y., Shimizu, Y., Kusagawa, Y., Akanuma, S. and Hosoya, K. (2013b) Propranolol transport across the inner blood-retinal barrier: potential involvement of a novel organic cation transporter. J Pharm. Sci. 102, 3332-3342. https://doi.org/10.1002/jps.23535
- Lau, C. H., Chan, C. M., Chan, Y. W., Lau, K. M., Lau, T. W., Lam, F. C., Law, W. T., Che, C. T., Leung, P. C., Fung, K. P., Ho, Y. Y. and Lau, C. B. (2007) Pharmacological investigations of the antidiabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 14, 778-784. https://doi.org/10.1016/j.phymed.2007.01.007
- Lee, N. Y. and Kang, Y. S. (2010) The inhibitory effect of rivastigmine and galantamine on choline transport in brain capillary endothelial cells. Biomol. Ther. (Seoul) 18, 65-70. https://doi.org/10.4062/biomolther.2010.18.1.065
- Lee, N. Y. and Kang, Y. S. (2016) In vivo and in vitro evidence for brain uptake of 4-Phenylbutyrate by the monocarboxylate transporter 1 (MCT1). Pharm. Res. 33, 1711-1722. https://doi.org/10.1007/s11095-016-1912-6
- Lee, N. Y., Choi, H. O. and Kang, Y. S. (2012) The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem. Res. 37, 1499-1507. https://doi.org/10.1007/s11064-012-0723-3
- Lee, N. Y., Lee, H. E. and Kang, Y. S. (2014a) Identification of P-Glycoprotein and transport mechanism of Paclitaxel in syncytiotrophoblast cells. Biomol. Ther. (Seoul) 22, 68-72. https://doi.org/10.4062/biomolther.2013.105
- Lee, N. Y., Lee, K. B. and Kang, Y. S. (2014b) Pharmacokinetic, placenta, and brain uptake of paclitaxel in pregnant rats. Cancer Chemother. Pharmacol. 73, 1041-1045. https://doi.org/10.1007/s00280-014-2439-3
- Lee, N. Y., Sai, Y., Nakashima, E., Ohtsuki, S. and Kang, Y. S. (2011) 6-Mercaptopurine transport by equilibrative nucleoside transporters in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBTs. J. Pharm. Sci. 100, 3773-3782. https://doi.org/10.1002/jps.22631
- Li, H., Wang, S., Zhang, B., Xie, Y., Wang, J., Yang, Q., Cao, W., Hu, J. and Duan, L. (2012) Influence of co-administered danshensu on pharmacokinetic fate and tissue distribution of paeonol in rats. Planta Med. 78, 135-140. https://doi.org/10.1055/s-0031-1280269
- Lin, H. C., Ding, H. Y., Ko, F. N., Teng, C. M. and Wu, Y. C. (1999) Aggregation inhibitory activity of minor acetophenones from Paeonia species. Planta Med. 65, 595-599. https://doi.org/10.1055/s-1999-14030
- Liu, J., Feng, L., Ma, D., Zhang, M., Gu, J., Wang, S., Fu, Q., Song, Y., Lan, Z., Qu, R. and Ma, S. (2013) Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neurosci. Lett. 549, 63-68. https://doi.org/10.1016/j.neulet.2013.06.002
- Misra, A., Ganesh, S., Shahiwala, A. and Shah, S. P. (2003) Drug delivery to the central nervous system: a review. J. Pharm. Sci. 6, 252-273.
- Mori, S., Ohtsuki, S., Takanaga, H., Kikkawa, T., Kang, Y. S. and Terasaki, T. (2004) Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J. Neurochem. 90, 931-941. https://doi.org/10.1111/j.1471-4159.2004.02552.x
- Ohtsuki, S. and Terasaki, T. (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24, 1745-1758. https://doi.org/10.1007/s11095-007-9374-5
- Okura, T., Hattori, A., Takano, Y., Sato, T., Hammarlund-Udenaes, M., Terasaki, T. and Deguchi, Y. (2008) Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab. Dispos. 36, 2005-2013. https://doi.org/10.1124/dmd.108.022087
- Okura, T., Kato, S., Takano, Y., Sato, T., Yamashita, A., Morimoto, R., Ohtsuki, S., Terasaki, T. and Deguchi, Y. (2011) Functional characterization of rat plasma membrane monoamine transporter in the blood-brain and blood-cerebrospinal fluid barriers. J. Pharm. Sci. 100, 3924-38. https://doi.org/10.1002/jps.22594
- Okura, T., Higuchi, K., Kitamura, A. and Deguchi, Y. (2014a) Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3. Biol. Pharm. Bull. 37, 286-291. https://doi.org/10.1248/bpb.b13-00773
- Okura, T., Kato, S. and Deguchi, Y. (2014b) Functional expression of organic cation/carnitine transporter 2 (OCTN2/SLC22A5) in human brain capillary endothelial cell line hCMEC/D3, a human bloodbrain barrier model. Drug Metab. Pharmacokinet. 29, 69-74. https://doi.org/10.2133/dmpk.DMPK-13-RG-058
- Palmer, A. M. (2011) Neuroprotective therapeutics for Alzheimer's disease. Trends Pharmacol. Sci. 32, 141-147. https://doi.org/10.1016/j.tips.2010.12.007
- Pardridge, W. M., Kang, Y. S. and Buciak, J. L. (1994) Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm. Res. 11, 738-746. https://doi.org/10.1023/A:1018940732550
- Pardridge, W. M. (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2, 3-14. https://doi.org/10.1602/neurorx.2.1.3
- Pardridge, W. M. (2012) Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 32, 1959-72. https://doi.org/10.1038/jcbfm.2012.126
- Pardridge, W. M. (2015) Blood-brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert. Opin. Ther. Targets 19, 1059-1072. https://doi.org/10.1517/14728222.2015.1042364
- Sadiq, M. W., Borgs, A., Okura, T., Shimomura, K., Kato, S., Deguchi, Y., Jansson, B., Björkman, S., Terasaki, T. and Hammarlund-Udenaes, M. (2011) Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo. J. Pharm. Sci. 100, 3912-3923. https://doi.org/10.1002/jps.22567
-
Shimomura, K., Okura, T., Kato, S., Couraud, P. O., Scherrmann, J. M., Terasaki, T. and Deguchi, Y. (2013) Functional expression of a proton-coupled organic cation (
$H^+$ /OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model. Fluids Barriers CNS 10, 8. https://doi.org/10.1186/2045-8118-10-8 - Suzuki, T., Ohmuro, A., Miyata, M., Furuishi, T., Hidaka, S., Kugawa, F., Fukami, T. and Tomono, K. (2010) Involvement of an influx transporter in the blood brain barrier transport of naloxone. Biopharm. Drug Dispos. 31, 243-252. https://doi.org/10.1002/bdd.707
- Tamai, I., Nakanishi, T., Kobayashi, D., China, K., Kosugi, Y., Nezu, J., Sai, Y. and Tsuji, A. (2004) Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol. Pharm. 1, 57-66. https://doi.org/10.1021/mp0340082
-
Tega, Y., Akanuma, S., Kubo, Y. and Hosoya, K. (2015a) Involvement of the
$H^+$ /organic cation antiporter in nicotine transport in rat liver. Drug Metab. Dispos. 43, 89-92. https://doi.org/10.1124/dmd.114.061002 - Tega, Y., Akanuma, S., Kubo, Y., Terasaki, T. and Hosoya, K. (2013) Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: involvement of a pyrilamine-sensitive organic cation transport process. Neurochem. Int. 62, 173-181. https://doi.org/10.1016/j.neuint.2012.11.014
-
Tega, Y., Kubo, Y., Yuzurihara, C., Akanuma, S. and Hosoya, K. (2015b) Carrier-mediated transport of nicotineAcross the Innerblood-retinal barrier: Involvement of a novel organic cation transporter driven by an outward
$H^{(+)}$ gradient. J. Pharm. Sci. 104, 3069-3075. https://doi.org/10.1002/jps.24453 - Tun, T. and Kang, Y. S. (2017) Imperatorin is transported through blood-brain barrier by carrier mediated transporters. Biomol. Ther. (Seoul) 25, 441-451. https://doi.org/10.4062/biomolther.2017.082
- Wu, D., Kang, Y. S., Bickel, U. and Pardridge, W. M. (1997) Bloodbrain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine. Drug Metab. Dispos. 25, 768-771.
- Xie, Y., Zhou, H., Wong, Y. F., Xu, H. X., Jiang, Z. H. and Liu, L. (2008) Study on the pharmacokinetics and metabolism of paeonol in rats treated with pure paeonol and an herbal preparation containing paeonol by using HPLC-DAD-MS method. J. Pharm Biomed. Anal. 46, 748-756. https://doi.org/10.1016/j.jpba.2007.11.046
- Xu, D., Zhou, C. and Xu, B. (2008) Protective effect of paeonol on beta-amyloid 25-35 induced toxicity in PC12 cells. Neural Regen. Res. 3, 863-866.
- Xu, S. P., Sun, G. P., Shen, Y. X., Wei, W., Peng, W. R. and Wang, H. (2007) Antiproliferation and apoptosis induction of paeonol in HepG2 cells. World J. Gastroenterol. 13, 250-256. https://doi.org/10.3748/wjg.v13.i2.250
- Zhao, Y., Fu, B., Zhang, X., Zhao, T., Chen, L., Zhang, J. and Wang, X. (2014) Paeonol pretreatment attenuates cerebral ischemic injury via upregulating expression of pAkt, Nrf2, HO-1 and ameliorating BBB permeability in mice. Brain Res. Bull. 109, 61-67. https://doi.org/10.1016/j.brainresbull.2014.09.008
- Zhong, S. Z., Ge, Q. H., Qu, R., Li, Q. and Ma, S. P. (2009) Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. J. Neurol. Sci. 277, 58-64. https://doi.org/10.1016/j.jns.2008.10.008
- Zhou, A., Wu, H., Pan, J., Wang, X., Li, J., Wu, Z. and Hui, A. (2015) Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Molecules 20, 1304-1318. https://doi.org/10.3390/molecules20011304
- Zhou, J., Zhou, L., Hou, D., Tang, J., Sun, J. and Bondy, S.C. (2011) Paeonol increases levels of cortical cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer's disease. Brain Res. 1388, 141-147. https://doi.org/10.1016/j.brainres.2011.02.064
Cited by
- Qingxin Kaiqiao Recipe Improves Cognitive Performance, Inhibits Apoptosis, and Reduces Pathological Deposits in APP/PS1 Double Transgenic Mice via the PI3K/Akt Pathway vol.2020, 2019, https://doi.org/10.1155/2020/3019674