References
- Abdel-Rassoul, G., El-Fateh, O. A., Salem, M. A., Michael, A., Farahat, F., El-Batanouny, M. and Salem, E. (2007) Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology 28, 434-440. https://doi.org/10.1016/j.neuro.2006.07.012
- Al-Sarraf, H. and Philip, L. (2003) Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res. 975, 179-188. https://doi.org/10.1016/S0006-8993(03)02632-5
- Aldad, T. S., Gan, G., Gao, X.-B. and Taylor, H. S. (2012) Fetal radiofrequency radiation exposure from 800-1900 Mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci. Rep. 2, 312. https://doi.org/10.1038/srep00312
- Altun, G., Deniz, O. G., Yurt, K. K., Davis, D. and Kaplan, S. (2018) Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environ. Res. 167, 700-707. https://doi.org/10.1016/j.envres.2018.02.031
- Ammari, M., Jeljeli, M., Maaroufi, K., Roy, V., Sakly, M. and Abdelmelek, H. (2008) Static magnetic field exposure affects behavior and learning in rats. Electromagn. Biol. Med. 27, 185-196. https://doi.org/10.1080/15368370802072158
- Arendash, G. W., Sanchez-Ramos, J., Mori, T., Mamcarz, M., Lin, X., Runfeldt, M., Wang, L., Zhang, G., Sava, V., Tan, J. and Cao, C. (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's disease mice. J. Alzheimers Dis. 19, 191-210. https://doi.org/10.3233/JAD-2010-1228
- Baan, R., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Islami, F., Galichet, L. and Straif, K. (2011) Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12, 624-626. https://doi.org/10.1016/S1470-2045(11)70147-4
- Banaceur, S., Banasr, S., Sakly, M. and Abdelmelek, H. (2013) Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav. Brain Res. 240, 197-201. https://doi.org/10.1016/j.bbr.2012.11.021
- Barr, R., Jones, D. L. and Rodger, C. J. (2000) ELF and VLF radio waves. J. Atmospheric Sol.-Terr. Phys. 62, 1689-1718. https://doi.org/10.1016/S1364-6826(00)00121-8
- Barthelemy, A., Mouchard, A., Bouji, M., Blazy, K., Puigsegur, R. and Villegier, A.-S. (2016) Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. Environ. Sci. Pollut. Res. Int. 23, 25343-25355. https://doi.org/10.1007/s11356-016-7758-y
- Belpomme, D., Campagnac, C. and Irigaray, P. (2015) Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev. Environ. Health 30, 251-271. https://doi.org/10.1515/reveh-2015-0027
- Benson, V. S., Pirie, K., Schuz, J., Reeves, G. K., Beral, V. and Green, J. (2013) Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int. J. Epidemiol. 42, 792-802. https://doi.org/10.1093/ije/dyt072
- Bhatheja, K. and Field, J. (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int. J. Biochem. Cell Biol. 38, 1995-1999. https://doi.org/10.1016/j.biocel.2006.05.007
- Birks, L., Guxens, M., Papadopoulou, E., Alexander, J., Ballester, F., Estarlich, M., Gallastegi, M., Ha, M., Haugen, M., Huss, A., Kheifets, L., Lim, H., Olsen, J., Santa-Marina, L., Sudan, M., Vermeulen, R., Vrijkotte, T., Cardis, E. and Vrijheid, M. (2017) Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts. Environ. Int. 104, 122-131. https://doi.org/10.1016/j.envint.2017.03.024
- Birks, L. E., Struchen, B., Eeftens, M., Van Wel, L., Huss, A., Gajsek, P., Kheifets, L., Gallastegi, M., Dalmau-Bueno, A., Estarlich, M., Fernandez, M. F., Meder, I. K., Ferrero, A., Jimenez-Zabala, A., Torrent, M., Vrijkotte, T. G. M., Cardis, E., Olsen, J., Valic, B., Vermeulen, R., Vrijheid, M., Roosli, M. and Guxens, M. (2018) Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environ. Int. 117, 204-214. https://doi.org/10.1016/j.envint.2018.04.026
- Bouji, M., Lecomte, A., Gamez, C., Blazy, K. and Villegier, A. S. (2016) Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 17, 841-857. https://doi.org/10.1007/s10522-016-9654-8
- Braune, S., Wrocklage, C., Raczek, J., Gailus, T. and Lucking, C. H. (1998) Resting blood pressure increase during exposure to a radiofrequency electromagnetic field. Lancet 351, 1857-1858. https://doi.org/10.1016/S0140-6736(98)24025-6
- Buckner, C. A., Buckner, A. L., Koren, S. A., Persinger, M. A. and Lafrenie, R. M. (2015) Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS ONE 10, e0124136. https://doi.org/10.1371/journal.pone.0124136
- Calvente, I., Perez-Lobato, R., Nunez, M.-I., Ramos, R., Guxens, M., Villalba, J., Olea, N. and Fernandez, M. F. (2016) Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys? Bioelectromagnetics 37, 25-36. https://doi.org/10.1002/bem.21951
- Cassel, J. C., Cosquer, B., Galani, R. and Kuster, N. (2004) Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav. Brain Res. 155, 37-43. https://doi.org/10.1016/j.bbr.2004.03.031
- Cobb, B. L., Jauchem, J. R. and Adair, E. R. (2004) Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 25, 49-57. https://doi.org/10.1002/bem.10148
- Cosquer, B., Vasconcelos, A. P., Frohlich, J. and Cassel, J. C. (2005) Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats. Behav. Brain Res. 161, 229-237. https://doi.org/10.1016/j.bbr.2005.02.025
- Cucurachi, S., Tamis, W. L. M., Vijver, M. G., Peijnenburg, W. J. G. M., Bolte, J. F. B. and De Snoo, G. R. (2013) A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ. Int. 51, 116-140. https://doi.org/10.1016/j.envint.2012.10.009
- Cui, Y., Liu, X., Yang, T., Mei, Y.-A. and Hu, C. (2014) Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium. 55, 48-58. https://doi.org/10.1016/j.ceca.2013.11.002
- D'andrea, J. A., Chou, C. K., Johnston, S. A. and Adair, E. R. (2003) Microwave effects on the nervous system. Bioelectromagnetics Suppl 6, S107-S147.
- Danker-Hopfe, H., Dorn, H., Bolz, T., Peter, A., Hansen, M.-L., Eggert, T. and Sauter, C. (2016) Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspective. Environ. Res. 145, 50-60. https://doi.org/10.1016/j.envres.2015.11.011
- Demsia, G., Vlastos, D. and Matthopoulos, D. P. (2004) Effect of 910-MHz electromagnetic field on rat bone marrow. ScientificWorldJournal 4 Suppl 2, 48-54.
- Dubreuil, D., Jay, T. and Edeline, J. M. (2002) Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav. Brain Res. 129, 203-210. https://doi.org/10.1016/S0166-4328(01)00344-8
- Dubreuil, D., Jay, T. and Edeline, J. M. (2003) Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks. Behav. Brain Res. 145, 51-61. https://doi.org/10.1016/S0166-4328(03)00100-1
- Elder, J. A. (2003) Ocular effects of radiofrequency energy. Bioelectromagnetics Suppl 6, S148-S161.
- Elliott, P., Toledano, M. B., Bennett, J., Beale, L., De Hoogh, K., Best, N. and Briggs, D. J. (2010) Mobile phone base stations and early childhood cancers: case-control study. BMJ 340, c3077. https://doi.org/10.1136/bmj.c3077
- Falzone, N., Huyser, C., Becker, P., Leszczynski, D. and Franken, D. R. (2011) The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int. J. Androl. 34, 20-26. https://doi.org/10.1111/j.1365-2605.2010.01054.x
- Feng, Y., He, D., Yao, Z. and Klionsky, D. J. (2014) The machinery of macroautophagy. Cell Res. 24, 24-41. https://doi.org/10.1038/cr.2013.168
- Franke, H., Ringelstein, E. B. and Stogbauer, F. (2005) Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics 26, 529-535. https://doi.org/10.1002/bem.20123
- Frey, A. H. (1998) Headaches from cellular telephones: are they real and what are the implications? Environ. Health Perspect. 106, 101-103. https://doi.org/10.1289/ehp.98106101
- Fritze, K., Sommer, C., Schmitz, B., Mies, G., Hossmann, K. A., Kiessling, M. and Wiessner, C. (1997) Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 94, 465-470. https://doi.org/10.1007/s004010050734
- Fujimoto, C., Iwasaki, S., Urata, S., Morishita, H., Sakamaki, Y., Fujioka, M., Kondo, K., Mizushima, N. and Yamasoba, T. (2017) Autophagy is essential for hearing in mice. Cell Death Dis. 8, e2780. https://doi.org/10.1038/cddis.2017.194
- Gruber, M. J., Palmquist, E. and Nordin, S. (2018) Characteristics of perceived electromagnetic hypersensitivity in the general population. Scand. J. Psychol. 59, 422-427. https://doi.org/10.1111/sjop.12449
- Hardell, L., Carlberg, M. and Hansson Mild, K. (2005) Use of cellular telephones and brain tumour risk in urban and rural areas. Occup. Environ. Med. 62, 390-394. https://doi.org/10.1136/oem.2004.017434
- Hardell, L., Carlberg, M., Soderqvist, F., Mild, K. H. and Morgan, L. L. (2007) Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup. Environ. Med. 64, 626-632. https://doi.org/10.1136/oem.2006.029751
- Hinrikus, H., Bachmann, M. and Lass, J. (2018) Understanding physical mechanism of low-level microwave radiation effect. Int. J. Radiat. Biol. 94, 877-882. https://doi.org/10.1080/09553002.2018.1478158
- Hoeijmakers, J. H. (2009) DNA damage, aging, and cancer. N. Engl. J. Med. 361,1475-1485. https://doi.org/10.1056/NEJMra0804615
- Hollenbach, D. F. and Herndon, J. M. (2001) Deep-earth reactor: nuclear fission, helium, and the geomagnetic field. Proc. Natl. Acad. Sci. U. S. A. 98, 11085-11090. https://doi.org/10.1073/pnas.201393998
- Hossmann, K. A. and Hermann, D. M. (2003) Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24, 49-62. https://doi.org/10.1002/bem.10068
- Hutter, H. P., Moshammer, H., Wallner, P. and Kundi, M. (2006) Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup. Environ. Med. 63, 307-313. https://doi.org/10.1136/oem.2005.020784
- ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 74, 494-522.
- Ikinci, A., Mercantepe, T., Unal, D., Erol, H. S., Sahin, A., Aslan, A., Baş, O., Erdem, H., Sonmez, O. F., Kaya, H. and Odaci, E. (2016) Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J. Chem. Neuroanat. 75, 99-104. https://doi.org/10.1016/j.jchemneu.2015.11.006
-
Jeong, Y. J., Kang, G.-Y., Kwon, J. H., Choi, H.-D., Pack, J.-K., Kim, N., Lee, Y.-S. and Lee, H.-J. (2015) 1950 MHz electromagnetic fields ameliorate a
${\beta}$ pathology in Alzheimer's disease mice. Curr. Alzheimer Res. 12, 481-492. https://doi.org/10.2174/156720501205150526114448 - Jiang, D.-P., Li, J.-H,. Zhang, J., Xu, S.-L., Kuang, F., Lang, H.-Y., Wang, Y.-F., An, G.-Z., Li, J. and Guo, G.-Z. (2016) Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res. 1642, 10-19. https://doi.org/10.1016/j.brainres.2016.02.053
- Jirik, V., Pekarek, L., Janout, V. and Tomaskova, H. (2012) Association between childhood leukaemia and exposure to power-frequency magnetic fields in Middle Europe. Biomed. Environ. Sci. 25, 597-601. https://doi.org/10.3967/0895-3988.2012.05.015
- Johansson, O. and Redmayne, M. (2016) Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot. Electromagn. Biol. Med. 35, 393-397. https://doi.org/10.3109/15368378.2015.1107839
- Kazemi, E., Mortazavi, S. M. J., Ali-Ghanbari, A., Sharifzadeh, S., Ranjbaran, R., Mostafavi-Pour, Z., Zal, F. and Haghani, M. (2015) Effect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cells. J. Biomed. Phys. Eng. 5, 105-114.
- Kim, J.-Y., Hong, S.-Y., Lee, Y.-M., Yu, S.-A., Koh, W. S., Hong, J.-R., Son, T., Chang, S.-K. and Lee, M. (2008) In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test. Environ. Toxicol. 23, 319-327. https://doi.org/10.1002/tox.20347
- Kim, J. H., Huh, Y. H. and Kim, H. R. (2016) Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure. PLoS ONE 11, e0153308. https://doi.org/10.1371/journal.pone.0153308
- Kim, J. H., Kim, H.-J., Yu, D.-H., Kweon, H.-S., Huh, Y. H. and Kim, H. R. (2017a) Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequencyelectromagnetic field. PLoS ONE 12, e0186416. https://doi.org/10.1371/journal.pone.0186416
- Kim, J. H., Sohn, U. D., Kim, H.-G. and Kim, H. R. (2018a) Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J. Physiol. Pharmacol. 22, 277-289. https://doi.org/10.4196/kjpp.2018.22.3.277
- Kim, J. H., Yu, D. H., Huh, Y. H., Lee, E. H., Kim, H. G. and Kim, H. R. (2017b) Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Sci. Rep. 7, 41129. https://doi.org/10.1038/srep41129
- Kim, J. H., Yu, D. H., Kim, H. J., Huh, Y. H., Cho, S. W., Lee, J. K., Kim, H. G. and Kim, H. R. (2018b) Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicol. Ind. Health 34, 23-35. https://doi.org/10.1177/0748233717740066
- Kleinerman, R. A., Linet, M. S., Hatch, E. E., Wacholder, S., Tarone, R. E., Severson, R. K., Kaune, W. T., Friedman, D. R., Haines, C. M., Muirhead, C. R., Boice, J. D. J. and Robison, L. L. (1997) Magnetic field exposure assessment in a case-control study of childhood leukemia. Epidemiology 8, 575-583. https://doi.org/10.1097/00001648-199709000-00017
- Kleinlogel, H., Dierks, T., Koenig, T., Lehmann, H., Minder, A. and Berz, R. (2008) Effects of weak mobile phone - electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions. Bioelectromagnetics 29, 488-497. https://doi.org/10.1002/bem.20418
- Kolodynski, A. A. and Kolodynska, V. V. (1996) Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia. Sci. Total Environ. 180, 87-93. https://doi.org/10.1016/0048-9697(95)04924-X
- Kumlin, T., Iivonen, H., Miettinen, P., Juvonen, A., Van Groen, T., Puranen, L., Pitkaaho, R., Juutilainen, J. and Tanila, H. (2007) Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat. Res. 168, 471-479. https://doi.org/10.1667/RR1002.1
- Kuribayashi, M., Wang, J., Fujiwara, O., Doi, Y., Nabae, K., Tamano, S., Ogiso, T., Asamoto, M. and Shirai, T. (2005) Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Bioelectromagnetics 26, 578-588. https://doi.org/10.1002/bem.20138
- Kuybulu, A. E., Oktem, F., Eiris, I. M., Sutcu, R., Ormeci, A. R., Eomlekci, S. and Uz, E. (2016) Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney. Ren. Fail. 38, 571-580. https://doi.org/10.3109/0886022X.2016.1148937
- Lagiou, P., Tamimi, R., Lagiou, A., Mucci, L. and Trichopoulos, D. (2002) Is epidemiology implicating extremely low frequency electric and magnetic fields in childhood leukemia? Environ. Health Prev. Med. 7, 33-39. https://doi.org/10.1007/BF02897328
- Lai, H., Carino, M. A., Horita, A. and Guy, A. W. (1992) Single vs. repeated microwave exposure: effects on benzodiazepine receptors in the brain of the rat. Bioelectromagnetics 13, 57-66. https://doi.org/10.1002/bem.2250130107
- Lai, H., Horita, A. and Guy, A. W. (1994) Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 15, 95-104. https://doi.org/10.1002/bem.2250150202
- Lai, H. and Singh, N. P. (2004) Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112, 687-694. https://doi.org/10.1289/ehp.6355
- Langer, C. E., De Llobet, P., Dalmau, A., Wiart, J., Goedhart, G., Hours, M., Benke, G. P., Bouka, E., Bruchim, R., Choi, K.-H., Eng, A., Ha, M., Karalexi, M., Kiyohara, K., Kojimahara, N., Krewski, D., Kromhout, H., Lacour, B. T., Mannetje, A., Maule, M., Migliore, E., Mohipp, C., Momoli, F., Petridou, E., Radon, K., Remen, T., Sadetzki, S., Sim, M. R., Weinmann, T., Vermeulen, R., Cardis, E. and Vrijheid, M. (2017) Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure. Environ. Int. 107, 65-74. https://doi.org/10.1016/j.envint.2017.06.002
- Lee, S., Johnson, D., Dunbar, K., Dong, H., Ge, X., Kim, Y. C., Wing, C., Jayathilaka, N., Emmanuel, N., Zhou, C. Q., Gerber, H. L., Tseng, C. C. and Wang, S. M. (2005) 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett. 579, 4829-4836. https://doi.org/10.1016/j.febslet.2005.07.063
- Leitgeb, N. (2011) Comparative health risk assessment of electromagnetic fields. Wien. Med. Wochenschr. 161, 251-262. https://doi.org/10.1007/s10354-011-0884-8
- Ma, Q., Chen, C., Deng, P., Zhu, G., Lin, M., Zhang, L., Xu, S., He, M., Lu, Y., Duan, W., Pi, H., Cao, Z., Pei, L., Li, M., Liu, C., Zhang, Y., Zhong, M., Zhou, Z. and Yu, Z. (2016) Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1. PLoS ONE 11, e0150923. https://doi.org/10.1371/journal.pone.0150923
- Magras, I. N. and Xenos, T. D. (1997) RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics 18, 455-461. https://doi.org/10.1002/(SICI)1521-186X(1997)18:6<455::AID-BEM8>3.0.CO;2-1
- Mann, K., Wagner, P., Brunn, G., Hassan, F., Hiemke, C. and Roschke, J. (1998) Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system. Neuroendocrinology 67, 139-144. https://doi.org/10.1159/000054308
- Marchesi, N., Osera, C., Fassina, L., Amadio, M., Angeletti, F., Morini, M., Magenes, G., Venturini, L., Biggiogera, M., Ricevuti, G., Govoni, S., Caorsi, S., Pascale, A. and Comincini, S. (2014) Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J. Cell Physiol. 229, 1776-1786. https://doi.org/10.1002/jcp.24631
- Mashevich, M., Folkman, D., Kesar, A., Barbul, A., Korenstein, R., Jerby, E. and Avivi, L. (2003) Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24, 82-90. https://doi.org/10.1002/bem.10086
- Medina-Fernandez, F. J., Escribano, B. M., Aguera, E., Aguilar-Luque, M., Feijoo, M., Luque, E., Garcia-Maceira, F. I., Pascual-Leone, A., Drucker-Colin, R. and Tunez, I. (2017) Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic. Res. 51, 460-469. https://doi.org/10.1080/10715762.2017.1324955
- Micheau, J. and Van Marrewijk, B. (1999) Stimulation of 5-HT1A receptors by systemic or medial septum injection induces anxiogenic-like effects and facilitates acquisition of a spatial discrimination task in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 1113-1133. https://doi.org/10.1016/S0278-5846(99)00057-3
- Millan, M. J. (2003) The neurobiology and control of anxious states. Prog. Neurobiol. 70, 83-244. https://doi.org/10.1016/S0301-0082(03)00087-X
- Morgan, L. L., Miller, A. B., Sasco, A. and Davis, D. L. (2015) Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review). Int. J. Oncol. 46, 1865-1871. https://doi.org/10.3892/ijo.2015.2908
- Morris, R. G., Garrud, P., Rawlins, J. N. and O'keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681-683. https://doi.org/10.1038/297681a0
- Mortazavi, S. A., Tavakkoli-Golpayegani, A., Haghani, M. and Mortazavi, S. M. (2014) Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation. J. Environ. Health Sci. Eng. 12, 75. https://doi.org/10.1186/2052-336X-12-75
- Moser, E. I., Krobert, K. A., Moser, M. B. and Morris, R. G. (1998) Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038-2042. https://doi.org/10.1126/science.281.5385.2038
- Moulder, J. E., Foster, K. R., Erdreich, L. S. and Mcnamee, J. P. (2005) Mobile phones, mobile phone base stations and cancer: a review. Int. J. Radiat. Biol. 81, 189-203. https://doi.org/10.1080/09553000500091097
- Myung, S. K., Ju, W., Mcdonnell, D. D., Lee, Y. J., Kazinets, G., Cheng, C. T. and Moskowitz, J. M. (2009) Mobile phone use and risk of tumors: a meta-analysis. J. Clin. Oncol. 27, 5565-5572. https://doi.org/10.1200/JCO.2008.21.6366
- Nanou, E. and Catterall, W. A. (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98, 466-481. https://doi.org/10.1016/j.neuron.2018.03.017
- Neher, E. and Sakaba, T. (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861-872. https://doi.org/10.1016/j.neuron.2008.08.019
- Nittby, H., Brun, A., Eberhardt, J., Malmgren, L., Persson, B. R. and Salford, L. G. (2009) Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology 16, 103-112. https://doi.org/10.1016/j.pathophys.2009.01.001
- Nixon, R. A. (2013) The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983-997. https://doi.org/10.1038/nm.3232
- Ohtani, S., Ushiyama, A., Maeda, M., Ogasawara, Y., Wang, J., Kunugita, N. and Ishii, K. (2015) The effects of radio-frequency electromagnetic fields on T cell function during development. J. Radiat. Res. 56, 467-474. https://doi.org/10.1093/jrr/rru126
- Oscar, K. J. and Hawkins, T. D. (1977) Microwave alteration of the blood-brain barrier system of rats. Brain Res. 126, 281-293. https://doi.org/10.1016/0006-8993(77)90726-0
- Pall, M. L. (2013) Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17, 958-965. https://doi.org/10.1111/jcmm.12088
- Pall, M. L. (2015) Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev. Environ. Health 30, 99-116.
- Pchitskaya, E., Popugaeva, E. and Bezprozvanny, I. (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70, 87-94. https://doi.org/10.1016/j.ceca.2017.06.008
- Phillips, J. L., Singh, N. P. and Lai, H. (2009) Electromagnetic fields and DNA damage. Pathophysiology 16, 79-88. https://doi.org/10.1016/j.pathophys.2008.11.005
- Preece, A. W., Iwi, G., Davies-Smith, A., Wesnes, K., Butler, S., Lim, E. and Varey, A. (1999) Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int. J. Radiat. Biol. 75, 447-456. https://doi.org/10.1080/095530099140375
- Ray, S. and Behari, J. (1990) Physiological changes in rats after exposure to low levels of microwaves. Radiat. Res. 123, 199-202. https://doi.org/10.2307/3577545
- Redmayne, M. and Johansson, O. (2014) Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence. J. Toxicol. Environ. Health B Crit. Rev. 17, 247-258. https://doi.org/10.1080/10937404.2014.923356
- Repacholi, M. H., Lerchl, A., Roosli, M., Sienkiewicz, Z., Auvinen, A., Breckenkamp, J., D’inzeo, G., Elliott, P., Frei, P., Heinrich, S., Lagroye, I., Lahkola, A., Mccormick, D. L., Thomas, S. and Vecchia, P. (2012) Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 33, 187-206. https://doi.org/10.1002/bem.20716
- Ruediger, H. W. (2009) Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology 16, 89-102. https://doi.org/10.1016/j.pathophys.2008.11.004
- Salford, L., Nittby, H., Brun, A., Grafstrom, G., Malmgren, L., Sommarin, M., Eberhardt, J., Widegren, B. and Persson, B. (2008) The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms. Prog. Theor. Phys. Supp. 173, 283-309. https://doi.org/10.1143/PTPS.173.283
- Salford, L. G., Brun, A., Sturesson, K., Eberhardt, J. L. and Persson, B. R. (1994) Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50, and 200 Hz. Microsc. Res. Tech. 27, 535-542. https://doi.org/10.1002/jemt.1070270608
- Salford, L. G., Brun, A. E., Eberhardt, J. L., Malmgren, L. and Persson, B. R. (2003) Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111, 881-883; discussion A408. https://doi.org/10.1289/ehp.6039
- Santini, R., Santini, P., Danze, J. M., Le Ruz, P. and Seigne, M. (2002) Study of the health of people living in the vicinity of mobile phone base stations: I. Influences of distance and sex. Pathol. Biol. 50, 369-373. https://doi.org/10.1016/S0369-8114(02)00311-5
- Schmid, M. R., Loughran, S. P., Regel, S. J., Murbach, M., Bratic Grunauer, A., Rusterholz, T., Bersagliere, A., Kuster, N. and Achermann, P. (2012) Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. J. Sleep Res. 21, 50-58. https://doi.org/10.1111/j.1365-2869.2011.00918.x
- Sherafat, M. A., Heibatollahi, M., Mongabadi, S., Moradi, F., Javan, M. and Ahmadiani, A. (2012) Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. J. Mol. Neurosci. 48, 144-153. https://doi.org/10.1007/s12031-012-9791-8
- Son, Y., Jeong, Y. J., Kwon, J. H., Choi, H. D., Pack, J. K., Kim, N., Lee, Y. S. and Lee, H. J. (2016) 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice. Bioelectromagnetics 37, 391-399. https://doi.org/10.1002/bem.21992
- Son, Y., Kim, J. S., Jeong, Y. J., Jeong, Y. K., Kwon, J. H., Choi, H.-D., Pack, J.-K., Kim, N., Lee, Y.-S. and Lee, H.-J. (2018) Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci. Lett. 666, 64-69. https://doi.org/10.1016/j.neulet.2017.12.042
- Stam, R. (2010) Electromagnetic fields and the blood-brain barrier. Brain Res. Rev. 65, 80-97. https://doi.org/10.1016/j.brainresrev.2010.06.001
- Stewart, A., Rao, J. N., Middleton, J. D., Pearmain, P. and Evans, T. (2012) Mobile telecommunications and health: report of an investigation into an alleged cancer cluster in Sandwell, West Midlands. Perspect. Public Health 132, 299-304. https://doi.org/10.1177/1757913911427375
- Sun, Z.-C., Ge, J.-L., Guo, B., Guo, J., Hao, M., Wu, Y.-C., Lin, Y.-A., La, T., Yao, P.-T., Mei, Y.-A., Feng, Y. and Xue, L. (2016) Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci. Rep. 6, 21774. https://doi.org/10.1038/srep21774
- Sutton, C. H. and Carroll, F. B. (1979) Effects of microwave-induced hyperthermia on the blood-brain barrier of the rat. Radio Sci. 14, 329-334. https://doi.org/10.1029/RS014i06Sp00329
- Swerdlow, A. J., Feychting, M., Green, A. C., Leeka Kheifets, L. K. and Savitz, D. A. (2011) Mobile phones, brain tumors, and the interphone study: where are we now? Environ. Health Perspect. 119, 1534-1538. https://doi.org/10.1289/ehp.1103693
- Tattersall, J. E. H., Scott, I. R., Wood, S. J., Nettell, J. J., Bevir, M. K., Wang, Z., Somasiri, N. P. and Chen, X. (2001) Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 904, 43-53. https://doi.org/10.1016/S0006-8993(01)02434-9
- Turedi, S., Kerimoglu, G., Mercantepe, T. and Odaci, E. (2017) Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59. Int. J. Radiat. Biol. 93, 990-999. https://doi.org/10.1080/09553002.2017.1350768
- Volkow, N. D., Tomasi, D., Wang, G. J., Vaska, P., Fowler, J. S., Telang, F., Alexoff, D., Logan, J. and Wong, C. (2011) Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA 305, 808-813. https://doi.org/10.1001/jama.2011.186
- Wagner, P., Roschke, J., Mann, K., Hiller, W. and Frank, C. (1998) Human sleep under the influence of pulsed radiofrequency electromagnetic fields: a polysomnographic study using standardized conditions. Bioelectromagnetics 19, 199-202. https://doi.org/10.1002/(SICI)1521-186X(1998)19:3<199::AID-BEM8>3.0.CO;2-X
- Wainwright, P. (2000) Thermal effects of radiation from cellular telephones. Phys. Med. Biol. 45, 2363-2372. https://doi.org/10.1088/0031-9155/45/8/321
- Wang, B. and Lai, H. (2000) Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics 21, 52-56. https://doi.org/10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6
- Wyde, M. E., Horn, T. L., Capstick, M. H., Ladbury, J. M., Koepke, G., Wilson, P. F., Kissling, G. E., Stout, M. D., Kuster, N., Melnick, R. L., Gauger, J., Bucher, J. R. and Mccormick, D. L. (2018) Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program's reverberation chamber exposure system. Bioelectromagnetics 39, 190-199. https://doi.org/10.1002/bem.22116
- Xu, S., Ning, W., Xu, Z., Zhou, S., Chiang, H. and Luo, J. (2006) Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci. Lett. 398, 253-257. https://doi.org/10.1016/j.neulet.2006.01.004
- Xu, S., Zhou, Z., Zhang, L., Yu, Z., Zhang, W., Wang, Y., Wang, X., Li, M., Chen, Y., Chen, C., He, M., Zhang, G. and Zhong, M. (2010) Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311, 189-196. https://doi.org/10.1016/j.brainres.2009.10.062
- Yamaguchi, H., Tsurita, G., Ueno, S., Watanabe, S., Wake, K., Taki, M. and Nagawa, H. (2003) 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics 24, 223-230. https://doi.org/10.1002/bem.10099
- Zhao, T. Y., Zou, S. P. and Knapp, P. E. (2007) Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412, 34-38. https://doi.org/10.1016/j.neulet.2006.09.092
Cited by
- Effect of Radiofrequency Electromagnetic Radiation on Photobacterium phosphoreum Luminescence vol.81, pp.6, 2019, https://doi.org/10.15407/microbiolj81.06.058
- Environmental risk factors of primary brain tumors: A review vol.175, pp.10, 2019, https://doi.org/10.1016/j.neurol.2019.08.004
- Design and Implementation of a Monitoring System using Optical Camera Communication for a Smart Factory vol.9, pp.23, 2019, https://doi.org/10.3390/app9235103
- Histological and Haematological Alterations in Female Mice after Exposure to Electromagnetic Fields vol.23, pp.3, 2020, https://doi.org/10.3923/pjbs.2020.398.405
- Dynamic changes in cytoskeleton proteins of olfactory ensheathing cells induced by radiofrequency electromagnetic fields vol.223, pp.5, 2020, https://doi.org/10.1242/jeb.217190
- Design and Implementation of the MIMO–COOK Scheme Using an Image Sensor for Long-Range Communication vol.20, pp.8, 2019, https://doi.org/10.3390/s20082258
- Designs for Sensing Radiation: Deployment of a Tangible Interface and a Visual Projection Interface for User Interaction vol.33, pp.2, 2019, https://doi.org/10.15187/adr.2020.05.33.2.57
- Does the short-term exposure to radiofrequency electromagnetic field originating from mobile phone affect auditory functions as measured by Acoustic Admittance and Evoked Otoacoustic Emission tests? vol.39, pp.4, 2020, https://doi.org/10.1080/15368378.2020.1826960
- Modelling the Influence of Electromagnetic Field on the User of a Wearable IoT Device Used in a WSN for Monitoring and Reducing Hazards in the Work Environment vol.20, pp.24, 2019, https://doi.org/10.3390/s20247131
- Changes of selected biochemical parameters of the honeybee under the influence of an electric field at 50 Hz and variable intensities vol.51, pp.6, 2019, https://doi.org/10.1007/s13592-020-00774-1
- Long-term exposure to electromagnetic radiation from mobile phones can cause considerable changes in the balance of Bax/Bcl2 mRNA expression in the hippocampus of mice vol.40, pp.1, 2019, https://doi.org/10.1080/15368378.2020.1830793
- Possible effects of different doses of 2.1 GHz electromagnetic radiation on learning, and hippocampal levels of cholinergic biomarkers in Wistar rats vol.40, pp.1, 2019, https://doi.org/10.1080/15368378.2020.1851251
- 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth With a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells vol.9, 2019, https://doi.org/10.3389/fpubh.2021.771508
- The Biocompatibility of Wireless Power Charging System on Human Neural Cells vol.11, pp.8, 2021, https://doi.org/10.3390/app11083611
- 30 Hz, Could It Be Part of a Window Frequency for Cellular Response? vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073642
- Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues vol.40, pp.2, 2021, https://doi.org/10.1080/15368378.2021.1874976
- Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice vol.22, pp.10, 2019, https://doi.org/10.3390/ijms22105340
- Design and Implementation of 2D MIMO-Based Optical Camera Communication Using a Light-Emitting Diode Array for Long-Range Monitoring System vol.21, pp.9, 2019, https://doi.org/10.3390/s21093023
- Microwave Absorption Performance of Single-Layer and Multi-Layer Structures Prepared by CNTs/Fe3O4 Nonwoven Materials vol.11, pp.8, 2019, https://doi.org/10.3390/cryst11081000
- Could Electromagnetic Field Exposure Contribute to “Zoom Fatigue”? vol.27, pp.4, 2021, https://doi.org/10.1089/act.2021.29339.dha
- Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields vol.11, pp.9, 2019, https://doi.org/10.3390/ani11092721
- Prenatal chronic exposure to electromagnetic fields modulated adenosine deaminase activity in serum and brain of Wistar rats’ offspring vol.55, pp.4, 2019, https://doi.org/10.1080/08327823.2021.1993045
- IMPACTS OF STATIC ELECTRIC FIELD PRODUCED BY ULTRA-HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION LINES ON HIPPOCAMPAL PROTEIN EXPRESSION AND MORPHOLOGICAL STRUCTURE IN MICE vol.21, pp.10, 2021, https://doi.org/10.1142/s0219519421400716