DOI QR코드

DOI QR Code

연잎, 연자육, 연자방 에탄올 추출물의 항염증 활성

Anti-inflammatory Activities of Ethanol Extracts from Leaf, Seed, and Seedpod of Nelumbo nucifera

  • 이은주 (국립안동대학교 생명과학과) ;
  • 서유미 (국립안동대학교 생명과학과) ;
  • 김용현 (국립안동대학교 생명과학과) ;
  • 정정욱 (국립안동대학교 생명과학과) ;
  • 성화정 (국립안동대학교 식품영양학과) ;
  • 손호용 (국립안동대학교 식품영양학과) ;
  • 박종이 (경북바이오산업 연구원) ;
  • 김종식 (국립안동대학교 생명과학과)
  • Lee, Eun-Joo (Department of Biological Sciences, Andong National University) ;
  • Seo, Yu-Mi (Department of Biological Sciences, Andong National University) ;
  • Kim, Yong-Hyun (Department of Biological Sciences, Andong National University) ;
  • Chung, Chungwook (Department of Biological Sciences, Andong National University) ;
  • Sung, Hwa-Jung (Department of Food and Nutrition, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University) ;
  • Park, Jong-Yi (Gyeongbuk Institute for Bio Industry) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • 투고 : 2018.07.31
  • 심사 : 2018.10.26
  • 발행 : 2019.04.30

초록

연은 아시아 국가에서 음식과 약재로 널리 사용되는 재료이다. 본 연구에서는 연의 잎(leaf, NL), 자육(seed, NS), 자방(seedpod, NSP)으로부터 에탄올 추출물을 제조하고 이들의 항염증 활성과 작용기전을 규명하였다. 이들의 항염증 활성을 연구하기 위하여 LPS로 자극된 RAW 264.7 세포에서 nitric oxide (NO) 생산을 측정하였다. NL, NS, NSP는 세포 생존율에 영향을 주지 않으면서, 농도의존적으로 NO의 생산을 현저하게 저해하였으며, iNOS 및 COX-2와 같은 pro-inflammatory 중재자들의 단백질 발현을 감소시켰다. 또한, NL, NS, NSP는 MAPKs 단백질의 인신화를 감소시키고 $NF-{\kappa}B$ p65의 핵으로의 이동을 저해함으로써, 세 추출물에 의한 항염증 활성은 MAPKs 경로와 $NF-{\kappa}B$ 경로를 조절함으로써 이루어짐을 제시한다. 게다가, ROS의 생성이 세 추출물에 의해서 모두 저해되었으며, HO-1의 발현과 HO-1의 전사조절인자인 Nrf2의 핵으로의 이동이 증가되었다. 결론적으로, 이러한 연구 결과는 연의 다양한 부위의 추출물인 NL, NS 그리고 NSP는 항염증 활성을 가지고 있으며, MAPKs, $NF-{\kappa}B$, Nrf2/HO-1 등 다양한 신호경로를 통해 조절할 수 있음을 제시한다.

Nelumbo nucifera, also known as sacred lotus, has mainly been used as a food throughout the Asian countries. In the present study, we prepared ethanol extracts from leaf (NL), seed (NS), and seedpod (NSP) of Nelumbo nucifera and investigated their anti-inflammatory activities in mouse macrophage RAW 264.7 cells. To evaluate the anti-inflammatory activities of NL, NS, and NSP, nitric oxide (NO) production was measured in LPS-stimulated RAW 264.7 cells. NL, NS, and NSP significantly reduced NO production in a dose-dependent manner without affecting cell viabilities. NL, NS, and NSP dramatically decreased the protein expression of pro-inflammatory genes such as iNOS and COX-2. NL, NS, and NSP also suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating they have their anti-inflammatory activities via regulating mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) pathways. In addition, we analyzed the production of reactive oxygen species (ROS) by the treatment of NL, NS, and NSP. All extracts reduced ROS production in a dose-dependent manner. And also, they increased heme oxygenase-1 (HO-1) protein expression and the nuclear translocation of nuclear respiratory factor 2 (Nrf2). In conclusion, our results suggest that Nelumbo nucifera has its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

키워드

SMGHBM_2019_v29n4_436_f0001.png 이미지

Fig. 1. Effects of leaf (NL), seed (NS) and seedpod (NSP) extracts of Nelumbo nucifera on nitric oxide (NO) production and cell viability in LPS-stimulated RAW264.7 macrophage.

SMGHBM_2019_v29n4_436_f0002.png 이미지

Fig. 2. Down-regulation of iNOS and COX-2 proteins by the treatment of NL, NS and NSP.

SMGHBM_2019_v29n4_436_f0003.png 이미지

Fig. 3. Inhibition of phosphorylation of MAPKs and nuclear translocation of NF-κB p65 by the treatment of NL, NS and NSP.

SMGHBM_2019_v29n4_436_f0004.png 이미지

Fig. 4. ROS scavenging effects of NL, NS, and NSP extracts.

SMGHBM_2019_v29n4_436_f0005.png 이미지

Fig. 5. Up-regulation of HO-1 via increased nuclear translocation of Nrf2 by NL, NS, and NSP treatment.

참고문헌

  1. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. and Tang, X. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta. 1863, 585-597. https://doi.org/10.1016/j.bbadis.2016.11.005
  2. Arjun, P., Saranya Sivan, P. S., Mohana Priya, S., Krishnamoorthy, M. and Balasubramanian, K. 2012. Phytochemical analysis and anticancer activity of Nelumbo nucifera extracts. J. Acad. Indus. 1, 81-85.
  3. Baskaran, R., Priya, L. B., Kalaiselvi, P., Poornima, P., Huang, C. Y. and Padma, V. V. 2017. Neferine from Nelumbo nucifera modulates oxidative stress and cytokines production during hypoxia in human peripheral blood mononuclear cells. Biomed. Pharmacother. 93, 730-736. https://doi.org/10.1016/j.biopha.2017.07.003
  4. Chen, Y., Ji, N., Pan, S., Zhang, Z., Wang, R., Qiu, Y., Jin, M. and Kong, D. 2017. Roburic Acid suppresses NO and IL-6 production via targeting NF-${\kappa}B$ and MAPK pathway in RAW264.7 cells. Inflammation 40, 1959-1966. https://doi.org/10.1007/s10753-017-0636-z
  5. Cho, B. O., Yin, H. H., Park, S. H., Byun, E. B., Ha, H. Y. and Jang, S. I. 2016. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-${\kappa}B$ and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7macrophages. Biosci. Biotechnol. Biochem. 80, 1520-1530. https://doi.org/10.1080/09168451.2016.1171697
  6. Dou, W., Zhang, J., Sun, A., Zhang, E., Ding, L., Mukherjee, S., Wei, X., Chou, G., Wang, Z. T. and Mani, S. 2013. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-${\kappa}B$ signalling. Br. J. Nutr. 110, 599-608. https://doi.org/10.1017/S0007114512005594
  7. El Assar, M., Angulo, J. and Rodriguez-Manas, L. 2013. Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med. 65, 380-401. https://doi.org/10.1016/j.freeradbiomed.2013.07.003
  8. Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F. and Loguercio, C. 2007. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 121, 2381-2386. https://doi.org/10.1002/ijc.23192
  9. Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
  10. Guo, C., Yang, L., Luo, J., Zhang, C., Xia, Y., Ma, T. and Kong, L. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. Int. Immunopharmacol. 38, 349-356. https://doi.org/10.1016/j.intimp.2016.06.021
  11. Jiang, X. L., Wang, L., Wang, E. J., Zhang, G. L., Chen, B., Wang, M. K. and Li, F. 2018. Flavonoid glycosides and alkaloids from the embryos of Nelumbo nucifera seeds and their antioxidant activity. Fitoterapia 25, 184-190.
  12. Jin, S. W., Hwang, Y. P., Choi, C. Y., Kim, H. G., Kim, S. J., Kim, Y., Chung, Y. C., Lee, K. J., Jeong, T. C. and Jeong, H. G. 2017. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem. Toxicol. 100, 138-148. https://doi.org/10.1016/j.fct.2016.12.031
  13. Kaewkroek, K., Wattanapiromsakul, C. and Tewtrakul, S. 2010. Anti-inflammatory mechanisms of compounds from Curcuma mangga rhizomes using RAW264.7 macrophage cells. Nat. Prod. Commun. 5, 1547-1550.
  14. Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L. and Lee, K. H. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 13, 443-448. https://doi.org/10.1016/j.bmc.2004.10.020
  15. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. 2004. New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657. https://doi.org/10.1172/JCI21060
  16. Lim, K. H. and Staudt, L. M. 2013. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 5, a011247. https://doi.org/10.1101/cshperspect.a011247
  17. Mantovani, A. and Pierotti, M. A. 2008. Cancer and inflammation: a complex relationship. Cancer Lett. 267, 180-181. https://doi.org/10.1016/j.canlet.2008.05.003
  18. Mukherjee, P. K., Mukherjee, D., Maji, A. K., Rai, S. and Heinrich, M. 2009. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile. J. Pharm. Pharmacol. 61, 407-422. https://doi.org/10.1211/jpp.61.04.0001
  19. Ono, Y., Hattori, E., Fukaya, Y., Imai, S. and Ohizumi, Y. 2006. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 106, 238-44. https://doi.org/10.1016/j.jep.2005.12.036
  20. Park, G., Oh, D. S., Lee, M. G., Lee, C. E. and Kim, Y. U. 2016. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway. Toxicol. Appl. Pharmacol. 310, 51-59. https://doi.org/10.1016/j.taap.2016.08.019
  21. Steiner, N., Balez, R., Karunaweera, N., Lind, J. M., Munch, G. and Ooi, L. 2016. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem. Int. 95, 46-54. https://doi.org/10.1016/j.neuint.2015.10.013
  22. Woo, J. H., Lee, J. H., Kim, H., Park, S. J., Joe, E. H. and Jou, I. 2015. Control of inflammatory responses: a new paradigm for the treatment of chronic neuronal diseases. Exp. Neurobiol. 24, 95-102. https://doi.org/10.5607/en.2015.24.2.95
  23. Wynn, T. A. and Barron, L. 2010. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver. Dis. 30, 245-257. https://doi.org/10.1055/s-0030-1255354
  24. Yang, D., Xiao, C. X., Su, Z. H., Huang, M. W., Qin, M., Wu, W. J., Jia, W. W., Zhu, Y. Z., Hu, J. F. and Liu, X. H. 2017. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-${\alpha}$-mediated inflammation response in endothelial cells by blocking the MAPK/NF-${\kappa}B$ and activating Nrf2/HO-1. Phytomedicine 32, 15-23. https://doi.org/10.1016/j.phymed.2017.04.005