DOI QR코드

DOI QR Code

GLOBAL EXISTENCE AND STABILITY OF A KORTEWEG-DE VRIES EQUATION IN NONCYLINDRICAL DOMAIN

  • Ha, Tae Gab (Department of Mathematics Institute of Pure and Applied Mathematics Chonbuk National University)
  • Received : 2018.05.04
  • Accepted : 2018.10.18
  • Published : 2019.04.30

Abstract

In this paper, we consider a Korteweg-de Vries equation in noncylindrical domain. This work is devoted to prove existence and uniqueness of global solutions employing Faedo-Galerkin's approximation and transformation of the noncylindrical domain with moving boundary into cylindrical one. Moreover, we estimate the exponential decay of solutions in the asymptotically cylindrical domain.

Keywords

References

  1. R. Benabidallah and J. Ferreira, On hyperbolic-parabolic equations with nonlinearity of Kirchhoff-Carrier type in domains with moving boundary, Nonlinear Anal. 37 (1999), no. 3, Ser. A: Theory Methods, 269-287. https://doi.org/10.1016/S0362-546X(98)00022-4
  2. H. R. Clark, A. T. Cousin, C. L. Frota, and J. Limaco, On the dissipative Boussinesq equation in a non-cylindrical domain, Nonlinear Anal. 67 (2007), no. 8, 2321-2334. https://doi.org/10.1016/j.na.2006.09.009
  3. T. G. Ha, Global existence and uniform decay of coupled wave equation of Kirchhoff type in a noncylindrical domain, J. Korean Math. Soc. 54 (2017), no. 4, 1081-1097. https://doi.org/10.4134/JKMS.J160035
  4. T. G. Ha and J. Y. Park, Global existence and uniform decay of a damped Klein-Gordon equation in a noncylindrical domain, Nonlinear Anal. 74 (2011), no. 2, 577-584. https://doi.org/10.1016/j.na.2010.09.011
  5. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39 (1895), no. 240, 422-443. https://doi.org/10.1080/14786449508620739
  6. N. A. Larkin, Modified KdV equation with a source term in a bounded domain, Math. Methods Appl. Sci. 29 (2006), no. 7, 751-765. https://doi.org/10.1002/mma.704
  7. F. Linares and A. F. Pazoto, On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1515-1522. https://doi.org/10.1090/S0002-9939-07-08810-7