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GLOBAL EXISTENCE AND STABILITY OF

A KORTEWEG-DE VRIES EQUATION IN

NONCYLINDRICAL DOMAIN

Tae Gab Ha

Abstract. In this paper, we consider a Korteweg-de Vries equation in
noncylindrical domain. This work is devoted to prove existence and

uniqueness of global solutions employing Faedo-Galerkin’s approximation

and transformation of the noncylindrical domain with moving boundary
into cylindrical one. Moreover, we estimate the exponential decay of so-

lutions in the asymptotically cylindrical domain.

1. Introduction

In this paper, we are concerned with global existence and stability of a
Korteweg-de Vries equation given by

(1.1)


ut + ux + uxxx + uux + a(x)u = 0 in Q̂,

u(α(t), t) = u(β(t), t) = ux(β(t), t) = 0 for t ≥ 0,

u(x, 0) = u0(x) for x ∈ [α0, β0],

where α, β ∈ C2([0,∞)), α(0) = α0 < β0 = β(0) and Q̂ = {(x, t) ∈ R2 : α(t) <
x < β(t), 0 < t < T}.

The Korteweg-de Vries equation was initially derived by Korteweg and de
Vries [5] as a model for one-directional water waves of small amplitude in
shallow water. At present it is known that the Korteweg-de Vries equation is
not only a good model for water waves but also a very useful approximation
model in nonlinear studies whenever one wishes to include and balance weak
nonlinear and dispersive effect.

In the case of Linares and Pazoto [7], they studied the problem (1.1) in
the cylindrical domain. On the other hand, the case of noncylindrical domain
problems has been studied less than cylindrical domain problems (cf. [1–4]). For
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example, Benabidallah and Ferreira [1] studied the existence of solutions for the
hyperbolic-parabolic equation in noncylindrical domain. Also Clark et al. [2]
proved the global solvability, uniqueness of solutions and the exponential decay
of solution for the Boussinesq equation in the noncylindrical domain. Recently,
Ha [3] proved the existence of solutions and decay of the energy of solutions for
the Kirchhoff type wave equation in the noncylindrical domain. However, there
is few research for the Korteweg-de Vries equation in noncylindrical domain.

In this paper, we study existence and uniqueness of global solutions for the
Korteweg-de Vries equation in noncylindrical domain as well as the exponential
decay of small solutions in asymptotically close to cylindrical domain.

This paper is organized as follows: In Section 2, we recall notations and
hypotheses and introduce our main results. In Section 3, we prove the existence
and uniqueness of solution employing Faedo-Galerkin’s method. In Section 4,
we prove the exponential decay rate for the solution.

2. Hypotheses and main results

We begin this section introducing some hypotheses and our main results.
Throughout this paper we use standard functional spaces. And ′ denotes the
derivative with respect to time t.

The idea that we use to prove the result of existence and uniqueness is based
on the transformation of our problem into another initial boundary value prob-
lem defined over a cylindrical domain whose sections are not time dependent.
This is done using a suitable change of variable. Our existence result on non-
cylindrical domain will follow using the inverse transformation. That is, using
the diffeomorphism τ : Q̂→ Q = (0, 1)× [0,∞) defined by

(2.1) τ(x, t) = (y, t) =
(x− α(t)

γ(t)
, t
)

and τ−1 : Q→ Q̂ defined by

(2.2) τ−1(y, t) = (x, t) = (α(t) + γ(t)y, t).

Denoting by v function

(2.3) v(y, t) = u ◦ τ−1(y, t) = u(α(t) + γ(t)y, t)

the initial boundary value problem (1.1) becomes

(2.4)


vt − 1

γ(t) (α′(t) + γ′(t)y − 1)vy + 1
γ3(t)vyyy + 1

γ(t)vvy

+a(α(t) + γ(t)y)v = 0 in Q,

v(0, t) = v(1, t) = vy(1, t) = 0 for t ≥ 0,

v(y, 0) = v0(y) for y ∈ [0, 1].

We now give hypotheses for the main result.
(H1) Hypotheses on α and β.

α, β ∈ C2([0,∞)),(2.5)
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There exist δ0 and δ1 such that 0 < δ0 ≤ γ := γ(t) = β(t)− α(t) ≤ δ1(2.6)

for all t ≥ 0,

α′(t) > 0, β′(t) < 0 for all t ≥ 0.(2.7)

(H2) Hypotheses on a := a(x).

a ∈ L∞(α(t), β(t)) for all t ≥ 0,(2.8)

a ≥ a0 > 0 for all x.(2.9)

Note that the assumption (2.7) means that Q̂ is decreasing in the sense that
if t1 > t2, then the projection of [α(t2), β(t2)] on the subspace t = 0 contains
the projection of [α(t1), β(t1)] on the same subspace.

Now we are in a position to state our main results.

Theorem 2.1. Let v0 ∈ L2(0, 1) and (H1)-(H2) hold. Then for all finite T > 0
there exists a unique weak solution v of the problem (2.4) satisfying

u ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).

As a consequence of the above theorem and using the change variable given
in (2.1), we obtain the next result.

Theorem 2.2. Let It and I0 the intervals (α(t), β(t)) (0 < t < T ) and
(α(0), β(0)) respectively. Let u0 ∈ L2(I0) and (H1)-(H2) hold. Then for all
finite T > 0 there exists a unique weak solution u of the problem (1.1) satisfy-
ing

u ∈ L∞(0, T ;L2(It)) ∩ L2(0, T ;H1(It)).

Theorem 2.3. Let u be the solution of problem (1.1) given by Theorem 2.2.
Suppose α′, β′ ∈ L1(0,∞) ∪ L∞(0,∞) and ||u0||L2(I0) ≤ 3

8Kγ2 , where K =

exp
{

1
2

∫ T
0

(
1
γ(t) −

γ′(t)
γ(t)

)
dt
}

for all t ≥ 0. Then there exist positive constants c

and ω such that

||u||2L2(It)
≤ c||u0||2L2(I0)e

−ωt

holds for all t > 0.

3. Existence of solutions

3.1. Proof of Theorem 2.1

In this subsection we prove the existence and uniqueness of weak solutions
to problem (2.4). First of all we note that by [6], for every fixed m ∈ N there
exists a unique strong solution to problem (2.4) in the class

(3.1) vm ∈ L∞(0,∞;H3(0, 1)), vmt ∈ L∞(0,∞;L2(0, 1)∩L2(0,∞;H1(0, 1)).

We now suppose v0(x) ∈ L2(0, 1) and let (wj)j∈N be a basis in L2(0, 1), and
let Vm be the finite dimensional subspace of L2(0, 1) spanned by the first m
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vectors {w1, w2, . . . , wm}. We construct approximations

vm =

m∑
j=1

gmj (t)wj(x),

where gmj (t) are solutions for the nonlinear system of ordinary differential equa-
tions

(3.2) (vmt , wj)− (
1

γ(t)
(α′(t) + γ′(t)y − 1)vmy , wj) +

1

γ3(t)
(vmyyy, wj)

+
1

γ(t)
(vmvmy , wj) + (a(α(t) + γ(t)y)vm, wj) = 0, (j = 1, . . . ,m),

(3.3) vm(y, 0) = vm0 (y)→ v0(y) in L2(0, 1).

Here (u, v) is the inner product in L2(0, 1). From the ODE theory we have the
local solution vm = vm(y, t) well defined on the interval [0, tm). The estimates
that follow permit us to extend the solution vm to the whole interval [0, T ) and
take the limit in vm as m → ∞. Henceforth the symbol Ci, i ∈ N indicates
positive constants, which may be different.

3.1.1. The first estimate. Setting wj = vm in (3.2) and integrating over (0, t)
with t ∈ (0, tm), we get

1

2
||vm||2L2(0,1) +

1

2δ3
1

∫ t

0

|vmy (0, s)|2ds

≤ C1

∫ t

0

||vm(y, s)||2L2(0,1)ds+
1

2
||vm0 (y)||2L2(0,1).

Therefore, by Gronwall’s lemma we have

(3.4) ||vm||2L2(0,1) +

∫ t

0

|vmy (0, s)|2ds ≤ C2,

where C2 is a positive constant which is independent m and t.

3.1.2. The second estimate. Setting wj = yvm in (3.2), we get

1

2

d

dt

∫ 1

0

y|vm|2dy +
α′

2γ

∫ 1

0

|vm|2dy +
γ′

γ

∫ 1

0

y|vm|2dy(3.5)

− 1

2γ

∫ 1

0

|vm|2dy +
3

2γ3

∫ 1

0

|vmy |2dy −
1

3

∫ 1

0

(vm)3dy

+

∫ 1

0

a(α(t) + γ(t)y)(vm)2ydy = 0.

Integrating (3.5) over (0, t) with t ∈ (0, tm) and using (H1), (H2) and (3.4), we
have

(3.6)

∫ t

0

∫ 1

0

|vmy (y, s)|2dyds ≤ 2δ3
1

9

∫ t

0

∫ 1

0

|vm(y, s)|3dyds+ C3.
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On the other hand, Hölder’s inequality, Sobloev imbedding theorem and
Young’s inequality imply∫ t

0

∫ 1

0

|vm(y, s)|3dyds ≤
∫ t

0

||vm||L∞(0,1)||vm||2L2(0,1)ds

≤ ε
∫ t

0

||vm||2H1
0 (0,1) + C(ε)

∫ t

0

||vm||4L2(0,1)ds.

Replacing above inequality in (3.6) and choosing ε > 0 sufficiently small, we
have

(3.7)

∫ t

0

∫ 1

0

|vmy (y, s)|2dyds ≤ C4.

From (3.4) and (3.7), we have

vm → v weakly star in L∞(0, T ;L2(0, 1)),

and

vm → v weakly in L2(0, T ;H1(0, 1)).

Moreover, convergences (3.4) and (3.7), and the regularity (3.1) permit us to
pass to the limit as m → ∞, consequently we obtain, for all w ∈ H2(0, 1) ∩
H1(0, 1)

(3.8) (vt, w)−(A(y, t)vy, w)+
1

γ3(t)
(vy, wyy)+

1

γ(t)
(vvy, w)+(B(y, t)v, w) = 0,

where A(y, t) = 1
γ(t) (α′(t) + γ′(t)y − 1) and B(y, t) = a(α(t) + γ(t)y). This

implies that the existence part of Theorem 2.1 is proved.

3.1.3. Uniqueness. Let v and v̄ be two solutions of (2.4). Define z = v − v̄,
we have

zt −
1

γ(t)
(α′(t) + γ′(t)y − 1)zy +

1

γ3(t)
zyyy +

1

γ(t)
(vzy + v̄yz)(3.9)

+ a(α(t) + γ(t)y)z = 0.

Multiplying (3.9) by z, we obtain

(zt, z)−
1

γ(t)
((α′(t) + γ′(t)y − 1)zy, z) +

1

γ3(t)
(zyyy, z)(3.10)

+
1

γ(t)
(vzy + v̄yz, z) + (a(α(t) + γ(t)y)z, z) = 0.

Due to regularity of solutions v and v̄,

sup
Q̄

{|v(y, t)|, |v̄(y, t)|, |vy(y, t)|, |v̄y(y, t)|} ≤ ν <∞.

Then (3.10) becomes

1

2

d

dt
||z||2L2(0,1) +

1

2
z2
y(0, t)(3.11)
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≤ ν

δ0

∫ 1

0

|zy| |z|dy +
ν

δ0
||z||2L2(0,1) −

γ′

2γ
||z||2L2(0,1).

Integrating (3.11) over (0, t) and then using the fact γ > 0, γ′ < 0 and Gron-
wall’s lemma, we have ||z||L2(0,1) = 0. This completes the proof of uniqueness.

3.2. Proof of Theorem 2.2

To show the existence in noncylindrical domain, we return to our original
problem in the noncylindrical domain by using the change variable given in (2.1)

by (y, t) = τ(x, t), (x, t) ∈ Q̂. Let v be the solution obtained from Theorem 2.1
and u defined by (2.3), then u belongs to the class

u ∈ L∞(0, T ;L2(It)) ∩ L2(0, T ;H1(It)).

Denoting by u(x, t) = v(y, t) = (v ◦ τ)(x, t) then from (2.2) it is easy to see
that u satisfies equations (1.1) in the sense of L∞(0,∞;L2(It)). Let u1 and u2

be two solutions to (1.1) and v1 and v2 be the functions obtained through the
diffeomorphism τ given by (2.1). Then v1 and v2 are solutions to (2.4). By the
uniqueness result of Theorem 2.1, we have v1 = v2, so u1 = u2. Thus the proof
of Theorem 2.2 is completed.

4. Stability

In this section we will prove Theorem 2.3. To prove the exponential decay of
L2-norm of solution, we are going to obtain time independent a priori estimate
for this norm. Multiplying (2.4) by v, we get

d

dt
||v||2L2(0,1) ≤

( 1

γ
− γ′

γ

)
||v||2L2(0,1).

By Gronwall’s lemma this imply

(4.1) ||v||2L2(0,1) ≤ ||v0||2L2(0,1) exp

{∫ t

0

( 1

γ(s)
− γ′(s)

γ(s)

)
ds

}
for all t ≥ 0.

Now we define

φ(y) = 1 + 4y − y3, y ∈ [0, 1].

Then we can easily check that

(4.2) min
y∈[0,1]

φ(y) = 1, max
y∈[0,1]

φ(y) = 4, φy(y) ≥ 1, max
y∈[0,1]

φy(y) = 4.

Multiplying (2.4) by φ(y)v, we have

1

2

d

dt
(φ, v2)−

(α′
γ
− 1

γ

)
(vy, φv)− γ′

γ
(vy, yφv) +

1

γ3
(vyyy, φv)(4.3)

+
1

γ
(vy, φv

2) + (a(α(t) + γ(t)y)v2, φ) = 0.
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We note that

(vy, φv) = −1

2
(φy, v

2),

(vy, yφv) = −1

2
(φ, v2)− 1

2
(yφy, v

2),

(vyyy, φv) = −1

2
(φyyy, v

2) + (φy, v
2
y) +

1

2
v2
y(0, t) +

1

2
(φy, y

2
y).

And using (4.1) and (4.2), we get

(vy, φv
2) = −1

3
(φy, v

3) ≥ −4

3
(1, v2

y)||v||L2(0,1)

≥ −4

3
||v0||L2(0,1) exp

{∫ t

0

( 1

γ(s)
− γ′(s)

γ(s)

)
ds

}
(φy, v

2
y).

Substituting above calculations into (4.3) and using (2.6) and (4.2), we have

d

dt
(φ, v2)+

(
3

γ3
− 8

3γ
||v0||L2(0,1) exp

{
1

2

∫ t

0

( 1

γ(s)
− γ
′(s)

γ(s)

)
ds

})
(φy, v

2
y)(4.4)

+
3

2δ1
(φ, v2) ≤M(t),

where M(t) = 4
δ0

(|β′|+ |γ′|+ 1)||v0||L2(0,1) exp
{

1
2

∫ t
0

(
1

γ(s) −
γ′(s)
γ(s)

)
ds
}

.

Taking into account the condition Theorem 2.3 and using the fact (φy, v
2
y) ≥

||vy||2L2(0,1) ≥ ||v||
2
L2(0,1) ≥

1
4 (φ, v2), we can rewrite (4.4) as follows

d

dt
(φ, v2) +

1 + 3δ2
1

2δ3
1

(φ, v2) ≤M(t).

We denote ||φ 1
2 v||L2(0,1) = z(t). Then above inequality becomes

d

dt
z(t) +

1 + 3δ2
1

2δ3
1

z(t) ≤M(t).

This implies

z(t) ≤ e
− 1+3δ21

2δ31
t
(
z(0) +

∫ t

0

e
1+3δ21
2δ31

τ
M(τ)dτ

)
.

Returning to the original value u(x, t), the proof of Theorem 2.3 is completed.
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