DOI QR코드

DOI QR Code

A Multi-Node Channel Rendezvous Algorithm in Cognitive Radio Ad-hoc Networks

인지 무선 애드혹 네트워크에서의 멀티노드 채널 랑데부 알고리즘

  • Seong, Jin-uk (Able IT Co.) ;
  • Lee, Bong-Hwan (Department of Electronics, Information and Communications Engineering, Daejeon University) ;
  • Yang, Dongmin (Graduate School of Archives and Records Management, Chonbuk National University)
  • Received : 2019.02.01
  • Accepted : 2019.03.03
  • Published : 2019.04.30

Abstract

In this paper, we focus on the study of multi-node rendezvous on one common channel among multiple channels before transmitting in CRAHNs (Cognitive Radio Ad-hoc Networks) for the efficient use of inefficient frequency resources. Most existing researches have dealt with the channel rendezvous between two nodes. But, it can be time-consuming to apply them to three or more nodes. In addition, it cab be impossible to communicate with each other. Therefore, in this paper, we propose a Multi-Node Sequence (MNSEQ), which allows three or more nodes to rendezvous on a single common channel in a short period of time. And, CSMA/CA was applied for data exchange after rendezvous. By performance evaluation through very extensive simulations, we have demonstrated that the proposed MNSEQ outperforms the existing scheme in terms of communication completion time and transmission efficiency.

본 논문에서는 비효율적인 주파수 자원의 효율적인 사용을 위해 연구되고 있는 CRAHNs(Cognitive Radio Ad-hoc Networks)환경에, 데이터를 전달하기 전에 다수의 노드들이 여러 채널 중 하나의 공통 채널에서 만나는 연구에 초점을 맞춘다. 기존의 연구들은 대부분 두 개 노드의 채널 랑데부를 다루는데, 이를 3개 이상의 노드들에 적용하면 시간이 오래 걸리거나 통신이 불가능하다. 그래서 본 논문에서는 3개 이상의 다수 노드들이 빠른 시간 내에 하나의 채널에서 만나게 해주는 MNSEQ(Multi-Node Sequence)를 제안한다. 또한, 랑데부 후 데이터 교환을 위해 CSMA/CA 기법을 적용하였다. 기존 두 개의 노드 기반 랑데부 기법과 MNSEQ를 통신완료시간 및 전송의 효율성 관점에서 성능평가를 수행하여 MNSEQ가 기존의 기법보다 우수하다는 것을 보여 준다.

Keywords

HOJBC0_2019_v23n4_453_f0001.png 이미지

Fig. 1 Visit a channel 1

HOJBC0_2019_v23n4_453_f0002.png 이미지

Fig. 2 Visit a channel 2

HOJBC0_2019_v23n4_453_f0003.png 이미지

Fig. 3 Structure of DRSEQ Sequence

HOJBC0_2019_v23n4_453_f0004.png 이미지

Fig. 4 Channel Rendezvous Using the DRSEQ

HOJBC0_2019_v23n4_453_f0005.png 이미지

Fig. 5 Rendezvous process using the MNSEQ 1

HOJBC0_2019_v23n4_453_f0006.png 이미지

Fig. 6 Rendezvous process using the MNSEQ 2

HOJBC0_2019_v23n4_453_f0007.png 이미지

Fig. 7 Rendezvous process using the MNSEQ 3

HOJBC0_2019_v23n4_453_f0008.png 이미지

Fig. 8 Operation algorithm of MNSEQ

HOJBC0_2019_v23n4_453_f0009.png 이미지

Fig. 9 Communication among four nodes

HOJBC0_2019_v23n4_453_f0010.png 이미지

Fig. 10 Performance evaluation result

HOJBC0_2019_v23n4_453_f0011.png 이미지

Fig. 11 Efficiency of transmission of MNSEQ

References

  1. J. Mitola, "Cognitive radio for flexible mobile Multimedia communications," in The IEEE International Workshop on Mobile Multimedia Communications, San Diego, CA, pp. 3-10, 1999.
  2. A Study on the Use of Frequency Spectrum. [Internet]. Available:https://www.fcc.gov
  3. I. F. Akyildiz, W. Y. Lee, and K. R. Chowdhury, "CRAHNS: Cognitive radio ad hoc networks," Elsevier Ad hoc Networks, vol. 7, no. 5, pp. 810-836, July 2009. https://doi.org/10.1016/j.adhoc.2009.01.001
  4. N. C. Theis, R. W. Thomas, and L. A. DaSilva, "Rendezvous for cognitive radios," IEEE Transactions on Mobile Computing, vol. 10, issue 2, pp. 216-227, 2010. https://doi.org/10.1109/TMC.2010.60
  5. G. Anquetin, and Y. C. Kim, "A Survey on Rendezvous Algorithms in Cognitive Radio Networks," The Journal of Korean Institute of Communications and Information Sciences, vol. 43, no. 2, pp. 209-218, Feb. 2018. https://doi.org/10.7840/kics.2018.43.2.209
  6. J. Li, H. Zhao, J. Wei, D. Ma, and L. Zhou, "Sender-Jump Receiver-Wait: a simple blind rendezvous algorithm for distributed cognitive radio networks," IEEE Transactions on Mobile Computing, vol. 17, issue 1, pp. 183-196, 2018. https://doi.org/10.1109/TMC.2017.2703166
  7. J. F. Huang, G. Y. Chang, and J. X. Huang, "Anti-jamming rendezvous scheme for cognitive radio networks," IEEE Transactions on Mobile Computing, vol. 16, issue 3, pp. 648-661, 2017. https://doi.org/10.1109/TMC.2016.2561275
  8. J. P. Sheu, C. W. Su, and G. Y. Chang, "Asynchronous Quorum-Based Blind Rendezvous Schemes for Cognitive Radio Networks," IEEE Transactions on Communications, vol. 64, issue 3, 2016.
  9. S. A. Pambudi, W. Wang, and C. Wang "Fast Rendezvous for Spectrum-Agile IoT Devices with Limited Channel Hopping Capability," in Proceedings of IEEE Infocom 2018, Honolulu:HI.
  10. D. Yang, J. Shin, and C. Kim, "Deterministic rendezvous scheme in multichannel access networks," IET Electronics. Letters, vol. 46, no. 20, pp. 1402-1404, 2010. https://doi.org/10.1049/el.2010.1990
  11. C. Cormio, and K. R. Chowdhury, "Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping," Elsevier Ad hoc Networks, vol. 8, pp. 430-438, 2010. https://doi.org/10.1016/j.adhoc.2009.10.004
  12. G. W. Park, J. K. Choi, and S. J. Yoo, "Multi-hop Routing Protocol based on Neighbor Conditions in Multichannel Ad-hoc Cognitive Radio Networks," The Journal of Korean Institute of Communications Sciences, vol. 36, no. 4, pp. 369-379. Apr. 2011. https://doi.org/10.7840/KICS.2011.36A.4.369
  13. J. H. Choi, and S. J. Yoo, "An Efficient Routing Protocol Considering Path Reliability in Cognitive Radio Ad-hoc Networks," The Journal of Korean Institute of Communications Sciences, vol. 39, no. 11, pp. 730-742, Nov. 2014.
  14. Y. M. Kwon, and H. K. Park, "Multi-Channel Allocation Scheme for Multi-Hop Transmission in Ad-hoc Cognitive Radio Networks," The Journal of Korean Institute of Information and Communication Engineering, vol. 21, no. 1, pp. 35-41, Jan. 2017. https://doi.org/10.6109/jkiice.2017.21.1.35
  15. Zaw Htike, C. S. Hong, and S. W. Lee, "The Life Cycle of the Rendezvous Problem of Cognitive Radio Ad-Hoc Networks," Journal of Computing Science and Engineering, vol. 7, no. 2, pp. 45-53, Apr. 2016.
  16. J. H. Kim, J. K. Choi, and S. J. Yoo, "TDMA based Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Ad Hoc Networks," The Journal of Korean Institute of Communication Sciences, vol. 35, no. 2, pp. 153-164, Feb. 2012.