참고문헌
- Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915-925 https://doi.org/10.1038/nrm1261
- Bladt F, Riethmacher D, Isenmann S, Aguzzi A and Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768-771 https://doi.org/10.1038/376768a0
- Schmidt C, Bladt F, Goedecke S et al (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702 https://doi.org/10.1038/373699a0
- Uehara Y, Minowa O, Mori C et al (1995) Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702-705 https://doi.org/10.1038/373702a0
- Maina F, Hilton MC, Ponzetto C, Davies AM and Klein R (1997) Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11, 3341-3350 https://doi.org/10.1101/gad.11.24.3341
- Chmielowiec J, Borowiak M, Morkel M et al (2007) c-Met is essential for wound healing in the skin. J Cell Biol 177, 151-162 https://doi.org/10.1083/jcb.200701086
- Borowiak M, Garratt AN, Wustefeld T, Strehle M, Trautwein C and Birchmeier C (2004) Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A 101, 10608-10613 https://doi.org/10.1073/pnas.0403412101
- Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA and Thorgeirsson SS (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A 101, 4477-4482 https://doi.org/10.1073/pnas.0306068101
- Schiering N, Knapp S, Marconi M et al (2003) Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A 100, 12654-12659 https://doi.org/10.1073/pnas.1734128100
- Longati P, Bardelli A, Ponzetto C, Naldini L and Comoglio PM (1994) Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET protooncogene (HGF receptor). Oncogene 9, 49-57
- Ponzetto C, Bardelli A, Zhen Z et al (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261-271 https://doi.org/10.1016/0092-8674(94)90318-2
- Maina F, Casagranda F, Audero E et al (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87, 531-542 https://doi.org/10.1016/S0092-8674(00)81372-0
- Peschard P, Fournier TM, Lamorte L et al (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8, 995-1004 https://doi.org/10.1016/S1097-2765(01)00378-1
- Hashigasako A, Machide M, Nakamura T and Matsumoto K (2004) Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 279, 26445-26452 https://doi.org/10.1074/jbc.M314254200
- Duplaquet L, Kherrouche Z, Baldacci S et al (2018) The multiple paths towards MET receptor addiction in cancer. Oncogene 37, 3200-3215 https://doi.org/10.1038/s41388-018-0185-4
- Olivero M, Rizzo M, Madeddu R et al (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer 74, 1862-1868 https://doi.org/10.1038/bjc.1996.646
- Ichimura E, Maeshima A, Nakajima T and Nakamura T (1996) Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res 87, 1063-1069 https://doi.org/10.1111/j.1349-7006.1996.tb03111.x
- Wislez M, Rabbe N and Marchal J (2003) Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 63, 1405-1412
- Park S, Choi YL, Sung CO et al (2012) High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol 27, 197-207
- Koochekpour S, Jeffers M, Rulong S, et al (1997) Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-5398
- Ferracini R, Di Renzo MF, Scotlandi K et al (1995) The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10, 739-749
- Tuck AB, Park M, Sterns EE, Boag A and Elliott BE (1996) Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148, 225-232
- Ponzetto C, Giordano S, Peverali F et al (1991) c-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 6, 553-559
- Watermann I, Schmitt B and Stellmacher F (2015) Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? Diagn Pathol 10, 130 https://doi.org/10.1186/s13000-015-0362-5
- Yang Y, Wu N, Shen J et al (2016) MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer 19, 778-788 https://doi.org/10.1007/s10120-015-0545-5
- Sattler M, Reddy MM, Hasina R, Gangadhar T and Salgia R (2011) The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol 3, 171-184 https://doi.org/10.1177/1758834011408636
- Krishnaswamy S, Kanteti R, Duke-Cohan JS et al (2009) Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res 15, 5714-5723 https://doi.org/10.1158/1078-0432.CCR-09-0070
- Baldacci S, Mazieres J, Tomasini P et al (2017) Outcome of EGFR-mutated NSCLC patients with MET-driven resistance to EGFR tyrosine kinase inhibitors. Oncotarget 8, 105103-105114 https://doi.org/10.18632/oncotarget.21707
- Prat M, Crepaldi T, Gandino L, Giordano S, Longati P and Comoglio P (1991) C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol 11, 5954-5962 https://doi.org/10.1128/MCB.11.12.5954
- Galvani AP, Cristiani C, Carpinelli P, Landonio A and Bertolero F (1995) Suramin modulates cellular levels of hepatocyte growth factor receptor by inducing shedding of a soluble form. Biochem Pharmacol 50, 959-966 https://doi.org/10.1016/0006-2952(95)00219-P
- Jeffers M, Taylor GA, Weidner KM, Omura S and Vande-Woude GF (1997) Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway. Mol Cell Biol 17, 799-808 https://doi.org/10.1128/MCB.17.2.799
- Kopitz C, Gerg M, Bandapalli OR et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67, 8615-8623 https://doi.org/10.1158/0008-5472.CAN-07-0232
- Schelter F, Kobuch J, Moss ML et al (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285, 26335-26340 https://doi.org/10.1074/jbc.M110.106435
- Wajih N, Walter J and Sane DC (2002) Vascular origin of a soluble truncated form of the hepatocyte growth factor receptor (c-met). Circ Res 90, 46-52 https://doi.org/10.1161/hh0102.102756
- Foveau B, Ancot F and Leroy C (2009) Downregulation of the Met Receptor Tyrosine Kinase by Presenilindependent Regulated Intramembrane Proteolysis. Mol Biol Cell 20, 2494-2506
- Ancot F, Leroy C, Muharram G et al (2012) Shedding-Generated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway. Traffic 13, 1261-1272 https://doi.org/10.1111/j.1600-0854.2012.01384.x
- Miller MA, Meyer AS and Beste MT (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 110, E2074-2083 https://doi.org/10.1073/pnas.1222387110
- Trusolino L, Bertotti A and Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11, 834-848 https://doi.org/10.1038/nrm3012
- Copin MC, Lesaffre M, Berbon M et al (2016) High-MET status in non-small cell lung tumors correlates with receptor phosphorylation but not with the serum level of soluble form. Lung Cancer 101, 59-67 https://doi.org/10.1016/j.lungcan.2016.09.009
- McNeil BK, Sorbellini M and Grubb RL 3rd et al (2014) Preliminary evaluation of urinary soluble Met as a biomarker for urothelial carcinoma of the bladder. J Transl Med 12, 199 https://doi.org/10.1186/1479-5876-12-199
- Michieli P, Mazzone M, Basilico C et al (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61-73 https://doi.org/10.1016/j.ccr.2004.05.032
- Tulasne D, Deheuninck J, Lourenco FC et al (2004) Proapoptotic function of the MET tyrosine kinase receptor through caspase cleavage. Mol Cell Biol 24, 10328-10339 https://doi.org/10.1128/MCB.24.23.10328-10339.2004
- Lefebvre J, Muharram G, Leroy C et al (2013) Caspasegenerated fragment of the Met receptor favors apoptosis via the intrinsic pathway independently of its tyrosine kinase activity. Cell Death Dis 4, e871 https://doi.org/10.1038/cddis.2013.377
- Mebratu YA, Leyva-Baca I and Wathelet MG (2017) Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat Commun 8, 803 https://doi.org/10.1038/s41467-017-00975-w
- Foveau B, Leroy C, Ancot F et al (2007) Amplification of apoptosis through sequential caspase cleavage of the MET tyrosine kinase receptor. Cell Death Differ 14, 752-764 https://doi.org/10.1038/sj.cdd.4402080
- Ma J, Zou C and Guo L (2013) A novel death defying domain in met entraps the active site of caspase-3 and blocks apoptosis in hepatocytes. Hepatology 59, 2010-2021 https://doi.org/10.1002/hep.26769
- Furlan A and Tulasne D (2013) How does met regulate the survival/apoptosis balance? Hepatology 60, 1108-1109 https://doi.org/10.1002/hep.26969
- Peschard P, Ishiyama N, Lin T, Lipkowitz S and Park M (2004) A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 279, 29565-29571 https://doi.org/10.1074/jbc.M403954200
- Deheuninck J, Goormachtigh G and Foveau B (2009) Phosphorylation of the MET receptor on juxtamembrane tyrosine residue 1001 inhibits its caspase-dependent cleavage. Cell Signal 21, 1455-1463 https://doi.org/10.1016/j.cellsig.2009.05.005
- Deheuninck J, Foveau B, Goormachtigh G et al (2008) Caspase cleavage of the MET receptor generates an HGF interfering fragment. Biochem Biophys Res Commun 367, 573-577 https://doi.org/10.1016/j.bbrc.2007.12.177
- Bredesen DE, Mehlen P and Rabizadeh S (2005) Receptors that mediate cellular dependence. Cell Death Differ 12, 1031-1043 https://doi.org/10.1038/sj.cdd.4401680
- Negulescu AM and Mehlen P (2018) Dependence receptors - the dark side awakens. FEBS J 285, 3909-3924 https://doi.org/10.1111/febs.14507
- Ichim G, Genevois AL, Menard M et al (2013) The Dependence Receptor TrkC Triggers Mitochondria-Dependent Apoptosis upon Cobra-1 Recruitment. Mol Cell 51, 632-646 https://doi.org/10.1016/j.molcel.2013.08.021
- Menard M, Costechareyre C, Ichim G et al (2018) Hey1-and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth. PLoS Biol 16, e2002912 https://doi.org/10.1371/journal.pbio.2002912
- Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38, 841-860 https://doi.org/10.1042/BST0380841
-
Francis RJ, Kotecha S and Hallett MB (2013)
$Ca^{2+}$ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol 93, 95-100 https://doi.org/10.1189/jlb.0412212 - Yun B, Lee H, Ghosh M et al (2014) Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation. J Biol Chem 289, 1491-1504 https://doi.org/10.1074/jbc.M113.497651
- Montagne R, Berbon M, Doublet L et al (2015) Necrosisand apoptosis-related Met cleavages have divergent functional consequences. Cell Death Dis 6, e1769 https://doi.org/10.1038/cddis.2015.132
- Billger M, Wallin M and Karlsson JO (1988) Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium 9, 33-44 https://doi.org/10.1016/0143-4160(88)90036-X
- Czogalla A and Sikorski AF (2005) Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci 62, 1913-1924 https://doi.org/10.1007/s00018-005-5097-0
- Kelly BL, Vassar R and Ferreira A (2005) Beta-amyloidinduced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem 280, 31746-31753 https://doi.org/10.1074/jbc.M503259200
- Cortot AB, Kherrouche Z, Descarpentries C et al (2017) Exon 14 deleted MET receptor as a new biomarker and target in cancers. J Natl Cancer Inst 109
- Lee JH, Han SU, Cho H et al (2009) A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19, 4947-4953 https://doi.org/10.1038/sj/onc/1203874
- Ma PC, Kijima T, Maulik G et al (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63, 6272-6281
- Tyner JW, Fletcher LB, Wang EQ et al (2010) MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Res 70, 6233-6237 https://doi.org/10.1158/0008-5472.CAN-10-0429
- Shieh JM, Tang YA, Yang TH et al (2013) Lack of association of C-Met-N375S sequence variant with lung cancer susceptibility and prognosis. Int J Med Sci 10, 988-994 https://doi.org/10.7150/ijms.5944
- Boland JM, Jang JS, Li J et al (2013) MET and EGFR mutations identified in ALK-rearranged pulmonary adenocarcinoma: molecular analysis of 25 ALK-positive cases. J Thorac Oncol 8, 574-581 https://doi.org/10.1097/JTO.0b013e318287c395
- Zaffaroni D, Spinola M, Galvan A et al (2005) Met proto-oncogene juxtamembrane rare variations in mouse and humans: differential effects of Arg and Cys alleles on mouse lung tumorigenesis. Oncogene 24, 1084-1090 https://doi.org/10.1038/sj.onc.1208324
- Montagne R, Baranzelli A, Muharram G et al (2017) MET receptor variant R970C favors calpain-dependent generation of a fragment promoting epithelial cell scattering. Oncotarget 8, 11268-11283 https://doi.org/10.18632/oncotarget.14499
- Merilahti JAM and Elenius K (2019) Gamma-secretasedependent signaling of receptor tyrosine kinases. Oncogene 38, 151-163 https://doi.org/10.1038/s41388-018-0465-z
- Matteucci E, Bendinelli P and Desiderio MA (2009) Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis 30, 937-945 https://doi.org/10.1093/carcin/bgp080
- Chaudhary SC, Cho MG, Nguyen TT, Park KS, Kwon MH and Lee JH (2014) A putative pH-dependent nuclear localization signal in the juxtamembrane region of c-Met. Exp Mol Med 46, e119 https://doi.org/10.1038/emm.2014.67
- Tauszig-Delamasure S, Yu LY, Cabrera JR et al (2007) The TrkC receptor induces apoptosis when the dependence receptor notion meets the neurotrophin paradigm. Proc Natl Acad Sci U S A 104, 13361-13366 https://doi.org/10.1073/pnas.0701243104
- Bordeaux MC, Forcet C, Granger L et al (2000) The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J 19, 4056-4063 https://doi.org/10.1093/emboj/19.15.4056
- Wang H, Boussouar A, Mazelin L et al (2018) The Proto-oncogene c-Kit Inhibits Tumor Growth by Behaving as a Dependence Receptor. Mol Cell 72, 413-425 e415 https://doi.org/10.1016/j.molcel.2018.08.040
- Genevois AL, Ichim G, Coissieux MM et al (2013) Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci U S A 110, 3017-3022 https://doi.org/10.1073/pnas.1212333110
- Luo Y, Kaz AM, Kanngurn S et al (2013) NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 9, e1003552 https://doi.org/10.1371/journal.pgen.1003552
- De Oliveira AT, Matos D, Logullo AF et al (2009) MET Is highly expressed in advanced stages of colorectal cancer and indicates worse prognosis and mortality. Anticancer Res 29, 4807-4811
- Petrelli A, Circosta P, Granziero L et al (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 103, 5090-5095 https://doi.org/10.1073/pnas.0508156103
- Pacchiana G, Chiriaco C, Stella MC et al (2010) Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 285, 36149-36157 https://doi.org/10.1074/jbc.M110.134031
- Cignetto S, Modica C, Chiriaco C et al (2016) Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody. Mol Oncol 10, 938-948 https://doi.org/10.1016/j.molonc.2016.03.004
- Vigna E, Chiriaco C, Cignetto S et al (2015) Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30. Mol Oncol 9, 1760-1772 https://doi.org/10.1016/j.molonc.2015.05.007
- Vigna E, Pacchiana G, Chiriaco C et al (2014) Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 92, 65-76 https://doi.org/10.1007/s00109-013-1079-0
- Basilico C, Modica C, Maione F, Vigna E and Comoglio PM (2018) Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy. Int J Cancer [Epub ahead of print]
- Perk LR, Stigter-van Walsum M, Visser GW et al (2008) Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30. Eur J Nucl Med Mol Imaging 35, 1857-1867 https://doi.org/10.1007/s00259-008-0774-5
- Athauda G, Giubellino A, Coleman JA et al (2006) c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 12(14 Pt 1), 4154-4162 https://doi.org/10.1158/1078-0432.CCR-06-0250
- Fu L, Guo W, Liu B et al (2013) Shedding of c-Met ectodomain correlates with c-Met expression in non-small cell lung cancer. Biomarkers 18, 126-135 https://doi.org/10.3109/1354750X.2012.751455
- Lv H, Shan B, Tian Z, Li Y, Zhang Y and Wen S (2015) Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. Biomed Res Int 2015, 626578 https://doi.org/10.1155/2015/626578
- Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039-1043 https://doi.org/10.1126/science.1141478
- Siebel C and Lendahl U (2017) Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 97, 1235-1294 https://doi.org/10.1152/physrev.00005.2017