DOI QR코드

DOI QR Code

Real-time Highly Sensitive Measurement of Myocardial Infarction Biomarkers Using Silicon-based Ellipsometric Biosensors

실리콘 기반 타원편광계식 바이오센서를 이용한 심근경색 생체표지자의 실시간 초고감도 진단 농도 측정

  • Min, Yoon Gi (Department of Photonics and Sensors / Department of Computer, Communication and Unmanned Technology, Graduate School, Hannam University) ;
  • Cho, Hyun Mo (Semiconductor Integrated Metrology Team, Korea Research Institute of Standards and Science) ;
  • Jo, Jae Heung (Department of Photonics and Sensors / Department of Computer, Communication and Unmanned Technology, Graduate School, Hannam University)
  • 민윤기 (한남대학교 대학원 광.센서공학과 / 컴퓨터통신무인기술학과) ;
  • 조현모 (한국표준과학연구원 첨단측정장비연구소 반도체측정장비팀) ;
  • 조재흥 (한남대학교 대학원 광.센서공학과 / 컴퓨터통신무인기술학과)
  • Received : 2019.01.02
  • Accepted : 2019.03.29
  • Published : 2019.04.25

Abstract

We report highly sensitive detection of myocardial infarction biomarkers, such as myoglobin and cTnI, within several hundred seconds using a rotating-analyzer ellipsometer and a biosensor with biochips fabricated on a $SiO_2$-coated tilted silicon substrate. We choose the running buffer to be pure phosphate-buffered saline (PBS) or 10% mixed human serum. When we choose the running buffer to be pure PBS, we obtain diagnostic densities of pure myocardial infarction biomarkers of up to 1 ng/ml and 5 pg/ml respectively. Meanwhile, when we use PBS with 10% human serum, the measured densities of myoglobin and cTnI were up to 1 ng/mL and 1 pg/mL respectively. The measured diagnostic densities are less than 1/15 and 1/80 (in cases of myoglobin and cTnI respectively) of those referenced by the World Health Organization.

$2^{\circ}$ 기울어진 산화막 코팅 실리콘 기판의 바이오칩과 프리즘으로 제작한 바이오센서와 검광자 회전 타원편광계를 이용하여 심근경색 생체표지자인 미오글로빈과 cTnI의 진단 농도를 수백 초 내에 실시간 초고감도로 측정하는데 성공하였다. 러닝 버퍼로는 순수한 phosphate buffered saline (PBS) 또는 PBS에 10% 인간 혈청을 섞은 러닝 버퍼를 사용하였다. PBS 조건에서는 미오글로빈과 cTnI가 각각 1 ng/mL와 5 pg/mL로 측정되었으며, PBS에 인간 혈청을 10% 섞은 조건에서는 미오글로빈과 cTnI는 각각 1 ng/mL과 1 pg/mL로 측정되었다. 이러한 심근경색 생체표지자의 진단 농도는 현재 제시된 세계보건기구의 심근경색 진단 기준 농도보다 미오글로빈은 1/15배 낮고, cTnI는 1/80배 낮다.

Keywords

KGHHBU_2019_v30n2_59_f0001.png 이미지

Fig. 1. Schematic diagram of the rotating analyzer ellipsometer.

KGHHBU_2019_v30n2_59_f0002.png 이미지

Fig. 2. Photo of the experimental setup of rotating analyzer ellipsometer with a silicon based ellipsometric biosensor.

KGHHBU_2019_v30n2_59_f0003.png 이미지

Fig. 3. Schematic diagram of the ellipsometric biosensor on the sample stage shown in Fig. 2.

KGHHBU_2019_v30n2_59_f0004.png 이미지

Fig. 4. Production process of the dextran SAM biochip using a silcon plate.

KGHHBU_2019_v30n2_59_f0005.png 이미지

Fig. 5. Measurement precision of biochip thickness variation during 300 s when the running buffer and the correcting biochip are PBS andan external biochip, respectively.

KGHHBU_2019_v30n2_59_f0006.png 이미지

Fig. 6. Graph of the real-time super-sensitive diagnostic density of myoglobin by using the rotating analyzer ellipsometer and a biosensor with biochips fabricated by a SiO2 coated tilted silicon substrate, when the running buffers are (a) pure PBS and (b) PBS with 10% human serum.

KGHHBU_2019_v30n2_59_f0007.png 이미지

Fig. 7. Graph of the real-time super-sensitive diagnostic density of cTnI by using the rotating analyzer ellipsometer and a biosensor with biochips fabricated by a SiO2 coated tilted silicon substrate, when the running buffers are (a) pure PBS and (b) PBS with 10% human serum.

Table 1. Comparison of data of Ψ obtained by the theoretical calculation, the commercial instrument (M-2000), and the silicon based ellipsometric biosensor (SISE), when the air plays a role of a running buffer

KGHHBU_2019_v30n2_59_t0001.png 이미지

Table 2. Comparison of data of Ψ of a SiO2 standard specimen obtained by using the commercial instrument (M-2000) and the silicon based ellipsometric biosensor (SISE), when PBS plays a role of a running buffer

KGHHBU_2019_v30n2_59_t0002.png 이미지

References

  1. M. S. Diware, H. M. Cho, W. Chegal, Y. J. Cho, J. H. Jo, S. W. O, S. H. Paek, Y. H. Yoon, and D. Kim, "Solution immersed silicon (SIS) based biosensors: a new approach in biosensing," Analyst 140, 706-709 (2015). https://doi.org/10.1039/C4AN01584C
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators, B 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  3. Y. Tang, X. Zeng, and J. Liang, "Surface plasmon resonance: An introduction to a surface spectroscopy technique," J. Chem. Educ. 87, 742-746 (2010). https://doi.org/10.1021/ed100186y
  4. G.-J. Lee, H. M. Cho, and J. H. Jo, "Measurement and analysis of the dynamics of peptide-antibody interactions using an ellipsometric biosensor based on a silicon substrate," Korean J. Opt. Photon. 28, 9-15 (2017). https://doi.org/10.3807/KJOP.2017.28.1.009
  5. M. S. Diware, H. M. Cho, W. Chegal, Y. J. Cho, S. W. O, S.-H. Paek, D. S. Kim, K.-S. Kim, Y. G. Min, J. H. Jo, and C. Shin, "Label-free detection of hepatitis B virus using solution immersed silicon sensors," Biointerphases 12, 01A402 (2017). https://doi.org/10.1116/1.4977075
  6. J. E. Adams III, D. R. Abendschein, and A. S. Jaffe, "Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s?," Circulation 88, 750-763 (1993). https://doi.org/10.1161/01.CIR.88.2.750
  7. H. Tunstall-Pedoe, K. Kuulasmaa, P. Amouyel, D. Arveiler, A.-M. Rajakangas, and A. Pajak, "Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents," Circulation 90, 588-612 (1994).
  8. E. Antman, J.-P. Bassand, W. Klein, M. Ohman, J. L. Lopez Sendon, L. Ryden, M. Simoons, and M. Tendera, "Myocardial infarction redefined-a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction: The Joint European Society of Cardiology/American College of Cardiology Committee," J. Am. Coll. Cardiol. 36, 959-969 (2000). https://doi.org/10.1016/S0735-1097(00)00804-4
  9. F. S. Apple, R. H. Christenson, R. Valdes, A. J. Andriak, A. Berg, S.-H. Duh, Y.-J. Feng, S. A. Jortani, N. A. Johnson, B. Koplen, K. Mascotti, and A. H.B. Wu, "Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction," Clin. Chem. 45, 199-205 (1999). https://doi.org/10.1093/clinchem/45.2.199
  10. D. A. Morrow, C. P. Cannon, R. L. Jesse, L. K. Newby, J. Ravkilde, A. B. Storrow, A. H.B. Wu, and R. H. Christenson, "National academy of clinical biochemistry laboratory medicine practice guidelines: Clinical characteristics and utilization of biochemical markers in acute coronary syndromes," Circulation 115, 356-375 (2007).
  11. J. Rosenblat, A. Zhang, and T. Fear, "Biomarker of myocardial infarction: past, present and future," Univ. West. Ont. Med. J. 81, 23-24 (2012).
  12. J. Humlicek, "Polarized Light and Ellipsometry," in Handbook of Ellipsometry, H. G. Tompkins and E. A. Irene ed. (William Andrew, Norwich, New York, NW, USA, 2005).
  13. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Chichester, England, 2007), Chapter 4 and Chapter 5.