DOI QR코드

DOI QR Code

Analysis of research trends on mobile health intervention for Korean patients with chronic disease using text mining

텍스트마이닝을 이용한 국내 만성질환자 대상 모바일 헬스 중재연구 동향 분석

  • 손연정 (중앙대학교 적십자 간호대학) ;
  • 이수경 (계명대학교 간호대학)
  • Received : 2019.02.07
  • Accepted : 2019.04.20
  • Published : 2019.04.28

Abstract

As the widespread use of mobile health intervention among Korean patients with chronic disease, it is needed to identify research trends in mobile health intervention on chronic care using text mining technique. This secondary data analysis was conducted to investigate characteristics and main research topics in intervention studies from 2005 to 2018 with a total of 20 peer reviewed articles. Microsoft Excel and Text Analyzer were used for data analysis. Mobile health interventions were mainly applied to hypertension, diabetes, stroke, and coronary artery disease. The most common type of intervention was to develop mobile application. Lately, 'feasibility', 'mobile health', and 'outcome measure' were frequently presented. Future larger studies are needed to identify the relationships among key terms and the effectiveness of mobile health intervention using social network analysis.

국내 만성질환 관리에서 모바일 헬스 적용이 임상적으로 유용하다는 보고가 증가됨에 따라, 본 연구는 텍스트 마이닝 기법을 적용하여 국내 외 학술지에 게재된 국내 만성질환자 대상 모바일 헬스 중재연구의 특성 및 중심 키워드의 변화를 파악하고자 시도된 이차분석연구이다. 분석대상 논문은 2005년부터 2018년까지 학술지에 게재된 최종 20편으로, 추출한 텍스트는 Microsoft Excel을 활용하여 논문별 분석을 실시하였고, Text Analyzer를 사용하여 주제어를 추출하였다. 연구결과, 모바일 헬스 중재 연구는 고혈압, 당뇨병, 뇌졸중 관상동맥질환자에 주로 적용되었다. 가장 많이 사용된 중재 유형은 애플리케이션 개발이었으며, 최근 연구에서는 주로 '유용성', '모바일 헬스', '결과측정' 등의 단어들이 가장 많이 출현하였다. 추후 만성질환자 대상 모바일 헬스 중재에 관한 국내 외 연구 모두를 포함하여 주제어 간의 연관성을 확인할 수 있는 사회연결망 분석방법을 적용하여 그 효용성을 확인해볼 것을 제안한다.

Keywords

DJTJBT_2019_v17n4_211_f0001.png 이미지

Fig. 1. Word Cloud for Keywords

Table 1. Characteristics of Selected Studies

DJTJBT_2019_v17n4_211_t0001.png 이미지

Table 2. Top 20 Keywords in Frequency and Weight

DJTJBT_2019_v17n4_211_t0002.png 이미지

Table 3. Newly Emerging Keywords of Research

DJTJBT_2019_v17n4_211_t0003.png 이미지

References

  1. J. Lee, W. Youn, S. I. Cho & Y. Cho. (2016). A strategic consideration on chronic disease prevention and management through mHealth utilization. The Korean Journal of Public Health, 53(1), 7-16. DOI : 10.17262/KJPH.2016.03.53.1.7
  2. E. H. Choi & J. Y. Seo. (2009). U-Health for management of chronic disease. Journal of Korean Medical Association, 52(12), 1154-1163. DOI : 10.5124/jkma.2009.52.12.1154
  3. E. C. Lee, S. C. Jo & H. Y. Lee. (2018). A study on the impact of mobile healthcare's diffusion of innovation factors on intention to use: Focusing on moderating effects of innovation propensity. Journal of Digital Convergence, 16(5), 153-162. DOI : 10.14400/JDC.2018.16.5.153
  4. Y. J. Kim, J. Y. Lee, Y. M. Jo & H. S. Kim. (2018). Study on chronic disease management for middle-aged people using mHealth. Conference of the Korean Society of Gerontological Social Welfare, 547-548.
  5. S. J. Yang, K. H. Yoon & H. S. Kim. (2016). Mobile health for health management of the elderly. Korean Journal of Clinical Geriatrics, 17(1), 1-6. DOI : 10.15656/kjcg.2016.17.1.1
  6. Y. J. Choi & S. H. Kweon. (2014). A semantic network analysis of the newspaper articles on big data. Journal of Cybercommunication Academic Society, 31(1), 241-286.
  7. Y. J. Son, S. K. Lee, S. Nam & J. L. Shim. (2018). Exploring research topics and trends in nursing-related communication in intensive care units using social network analysis. CIN: Computers, Informatics, Nursing, 36(8), 383-392. DOI : 10.1097/CIN.0000000000000444
  8. W. G. Kang, E. S. Ko, H. R. Lee & J. Kim. (2018). A Study of the consumer major perception of packaging using big data analysis : Focusing on text mining and semantic network analysis. Journal of the Korea Convergence Society, 9(4), 15-22. DOI : 10.15207/JKCS.2018.9.4.015
  9. H. J. Jung. (2016). Research dynamics in innovation studies using text mining. Journal of Technology Innovation, 24(4), 249-276. DOI : 10.14383/SIME.2016.24.4.249
  10. L. N. Yoo & S. C. Hwang. (2017). A trend analysis of agricultural and food marketing studies using text-mining technique. Journal of the Korea Academia-Industrial Cooperation Society, 18(10), 215-226. DOI : 10.5762/KAIS.2017.18.10.215
  11. H. Jeong, L. C. Hee, O. H. Jung, Y. Y. Chan, K. H. Ki, J. Y. Han & O. C. Young. (2014). Automatic generation of issue analysis report based on social big data mining. KIPS Transactions on Software and Data Engineering, 3(12), 553-564. DOI : 10.3745/KTSDE.2014.3.12.553
  12. C. H. Choi & P. S. Jang. (2019). Keyword network analysis on global research trend in design (1999-2018). Journal of Convergence for Information Technology, 9(2), 7-16. DOI : 10.22156/CS4SMB.2019.9.2.007
  13. K. Y. Han, M. J. Kim & Y. M. Ahn. (2014). The method for related keyword extraction using normalized keyword weight. Proceedings of the KISS Conference, 1445-1447.
  14. N. Abdelhamid, A. Ayesh & F. Thabtah. (2014). Phishing detection based associative classification data mining. Expert Systems with Applications, 41(13), 5948-5959. DOI : 10.1016/j.eswa.2014.03.019
  15. W. Zhang, T. Yoshida & X, Tang. (2011). A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Systems with Applications, 38(3), 2758-2765. DOI : 10.1016/j.eswa.2010.08.066
  16. M. Bae, I. Min & K. Jung. (2016). Estimating the middle and old aged population with major chronic diseases: Adapting the future elderly model. Journal of Health Informatics and Statistics, 4(2), 212-222. DOI : 10.21032/jhis.2016.41.2.212
  17. M. S. Marcolino, J. A. Q. Oliveira, M. D'Aqoslino, A. L. Ribeiro, M. B. M. Alkmim & D. Novilo-Orliz D. (2018). The impact of mHealth intervention: Systematic review of sytematic reviews. JMIR Mhealth Uhealth, 6(1), e23. DOI : 10.2196/mhealth.8873
  18. J. A. Watkins, J. Goudge, F. X. Gomez-Olive. C. Huxley, K. Dodd & F. Griffins. (2018). M-Health test and voice communication for monitoring people with chronic diseases in low-resource settings: A realist review. BMJ Global Health, 3(2); e000543. DOI : 10.1136/bmjgh-2017-000543
  19. R. E. Sarabi, F. Sadoughi, R. J. Orak & K. Bahaadinbeigy. (2016). The effectiveness of mobile phone text messaging in improving medication adherence for patients with chronic disease: A systematic review. Iranian Red Crescent Medical Journal, 18(5), e25183. DOI : 10.5812/ircmj.25183
  20. I. Ahmed, N. S. Ahamed, S. Ali, S. Ali, A. George, H. S. Danish, E. Uppai, J. Soo, M. H. Mobasheri, D. King, B. Cox & A. Dari. (2018). Medication adherence apps: Review and content analysis. JMIR Mhealth Uhealth, 6(3), e62. DOI : 10.2196/mhealth.6432
  21. M. G. Cho. (2017). Smart elderly-care system using smart-phone. Journal of Convergence for Information Technology, 7(5), 129-135 DOI : 10.22156/CS4SMB.2017.7.5.129
  22. E. J. Jung, J. C. Kim, H. Jung, H. Yoo & K. Chung. (2017). Mining based mental health and blood pressure management service for smart health. Journal of the Korea Convergence Society, 8(1), 13-18. DOI : 10.15207/JKCS.2017.8.1.013