그림 1. 제안하는 알고리듬의 순서도 Fig. 1. The flow chart of proposed algorithm
그림 2. 컨볼루션 신경망을 사용한 역 톤 매핑 구조 Fig 2. The structure of inverse tone-mapping using convolutional neural network
그림 3. 각 역 톤 매핑 방법들의 HDR-VDP-2.2 확률 맵 시각화 비교결과(21번 영상), (a) Akyüz 등의 알고리듬, (b) Huo 등의 알고리듬, (c) Eilersten 등의 알고리듬, (d) ExpandNet, (e) 제안하는 알고리듬 Fig 3. The comparison results of inverse tone-mapping methods(at no.21 image), (a) Akyüz et al., (b) Huo et al., (c) Eilersten et al., (d) ExpandNet, (e) proposed algorithm
그림 4. 각 방법의 톤 매핑 주관적 화질 비교 결과(2번 영상), (a,g) 원본 영상, (b,h) Eilersten 등의 알고리듬, (c,i) ExpandNet, (d,j) Akyüz 등의 알고리듬, (e,k) Huo 등의 알고리듬, (f,l) 제안하는 알고리듬의 결과 영상과 예측된 포화 영역 영상 Fig 4. The comparison of tone-mapping result subjective image quality of each method(at no.2 image), (a,g) ground truth, (b,h) Akyüz et al., (c,i) Huo et al., (d,j) Eilersten et al., (e,k) ExpandNet,, (f,l) proposed algorithm
표 1. 시험 데이터셋에 대한 지각적 연속성 부호화 최대 신호 대 잡음비 Table 1. The PU-PSNR of test dataset
표 2. 시험 데이터셋에 대한 지각적 연속성 부호화 구조적 유사성 Table 2. The PU-SSIM of test dataset
References
- H. Landis, "Production-ready global illumination," SIGGRAPH Course Notes, Vol.16, pp.87-101, 2002.
- A. O. Akyuz, R. Fleming, B. E. Riecke, E. Reinhard, and H. H. Bulthoff, "Do HDR displays support LDR Content?: A psychophysical evaluation," ACM Transaction on Graphics, Vol.26, No.38, July 2007.
- F. Banterle, A. Artusi, K. Debattista, and A. Chalmers, Advanced High Dynamic Range Imaging:theory and practice, A K Peters/CRC Press, New York, February 2011.
- A. G. Rempel, M. Trentacoste, H. Seetzen, H. D. Young, W. Heidrich, L. Whiteheadm, and G. Ward, "LDR2HDR: On-the-fly reverse tone mapping of legacy video and photographs," ACM Transaction on Graphics, Vol.26, No.39, 2007.
- G. Eilertsen, J. Kronander, G. Denes, R. Mantiuk, and J. Unger, "HDR image reconstruction from a single exposure using deep CNNs," ACM Transactions on Graphics, Vol.36, No.6, pp.1-15, 2017.
- D. Marnerides, T. Bashford-Rogers, J. Hatchett, and K. Debattista, "ExpandNet: A Deep Convolutional Neural Network for High Dynamic Range Expansion from Low Dynamic Range Content," Computer Graphics Forum, Vol.37, No.2, pp.37-49, 2018
- A. A. Goshtasby, "Fusion of Multi-exposure Images," Image and Vision Computing, Vol.23, pp. 611-618, June 2005. https://doi.org/10.1016/j.imavis.2005.02.004
- S. Hecht, "The visual discrimination of intensity and the Weber-Fechner law," The Journal of General Physiology, Vol.7, pp.235-267, 1924. https://doi.org/10.1085/jgp.7.2.235
- G. E. Hinton and R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, Vol.313, No.5786, pp.504-507, 2006. https://doi.org/10.1126/science.1127647
- P. Vincent, H. Larochelle, Y. Bengio and P. Manzagol, "Extracting and composing robust features with denoising autoencoders," Proceeding of 25th International Conference on Machine Learning(ICML), pp.1096-1103, 2008.
- K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", Arxiv.org, 2014, https://arxiv.org/abs/1409.1556
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceeding of IEEE conference on computer vision and pattern recognition(CVPR), pp.770-778, 2016.
- M. D. Fairchild, "The HDR Photographic survey," Proceeding of Color and Imaging Conference, Vol.2007, No.1, pp.233-238, 2007.
- G. Ward, "Hight Dynamic Range Image Encodings," 2006.
- T. O. Aydin, R. Mantiuk, and H. P. Seidel, "Extending quality metrics to full luminance range images," Human Vision and Electronic Imaging XIII, Vol.6806, pp.68060B, March 2008.
- M. Narwaria, R. Mantiuk, M. P. Da Silva, and P. Le Callet, "HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images," Journal of Electronic Imaging, Vol.24, No.010501, 2015.
- V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," Proceeding of the 27th International Conference on Machine Learning(ICML), pp.807-814, 2010.
- Y. Huo, F. Yang, L. Domg, and V. Brost, "Physiological inverse tone mapping based on retina response," The Visual Computer, Vol.30, pp.507-517, 2014. https://doi.org/10.1007/s00371-013-0875-4
- Z. Liand J. Zheng, Z. Zhu, W. Yao, and S. Wu, "Weighted Guided Image Filtering," IEEE Transaction on Image Processing, Vol.24, No.1, pp.120-129, 2015. https://doi.org/10.1109/TIP.2014.2371234
- K. He, J. Sun, and X. Tang, "Guided Image Filtering," Proceeding of European Conference on Computer Vision(ECCV), Berlin, Heidelberg, pp.1-14, 2010.
- J. An, S. Lee, J. Kuk, and N. Cho, "A multi-exposure image fusion algorithm without ghost effect," Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.