DOI QR코드

DOI QR Code

A preliminary numerical analysis on the behaviour of tunnel under construction in fracture zone considering seismic load

지진 하중을 고려한 단층파쇄대에서의 시공 중 터널 거동 분석에 관한 수치해석적 연구

  • Oh, Dong-Wook (Dept. of Civil Engineering, Seoul National University of Science and Technology) ;
  • Hong, Soon-Kyo (Dept. of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kim, Dae-Kon (Dept. of Civil Engineering, Seoul National University of Science and Technology) ;
  • Lee, Yong-Joo (Dept. of Civil Engineering, Seoul National University of Science and Technology)
  • 오동욱 (서울과학기술대학교 건설시스템공학과) ;
  • 홍순교 (서울과학기술대학교 건설시스템공학과) ;
  • 김대곤 (서울과학기술대학교 건설시스템공학과) ;
  • 이용주 (서울과학기술대학교 건설시스템공학과)
  • Received : 2019.02.12
  • Accepted : 2019.03.08
  • Published : 2019.03.31

Abstract

Recently occurred earthquake Gyeongju and Pohang served as a momentum to remind that Korean peninsular is not a safety zone from earthquake anymore. The importance of seismic design, therefore, have been realized and researches regarding design response spectrum have been actively carried out by many researchers and engineers. Current tunnel seismic design method is conducted to check safety of tunnel structure by dynamic numerical analysis with condition of completed lining installation, so, it is impossible to consider safety of tunnel behavior under construction. In this study, therefore, dynamic numerical analysis considering seismic wave propagations has been performed after back analysis using results from field monitoring of tunnel under construction in fractured zone and 1st reinforcement (shotcrete, rockbolt) behaviour are analyzed. Waves are classified by period characteristic (short and long). As a result, the difference depending on period characteristic is minor, and increasements of displacement are obtained at crown displacement due to seismic wave is 28~31%, 14~16% at left side of tunnel in the fractured zone, 13~27% at right side of tunnel in the bed rock, respectively. In case of shotcrete axial force is increased 113~115% at tunnel crown, 102% at left side, 106~110% at right side, respectively. Displacement and axial force of rockbolts which are selected by type of anchored grounds (only fractured zone, fractured zone and bed rock, only bedrock) are analyzed, as a result, rockbolt which is anchored to fractured zone and bed rock at the same time are weaker than any other case.

최근 발생한 경주 및 포항지진은 한반도가 더 이상 지진으로부터 안전지대가 아님을 상기시키는 계기가 되었다. 그에 따라 내진설계에 대한 중요성이 대두되고 있으며, 설계응답스펙트럼(design response spectrum)에 대한 연구 또한 많은 연구자들에 의해 활발히 이루어지고 있다. 현재 터널의 내진설계는 라이닝(Lining) 설치 완료 후 동적해석을 수행하여 안정성을 검토하는 과정으로 수행되어 시공 중에 지진 발생에 대한 고려는 이루어지지 않고 있다. 따라서 본 연구에서는 단층파쇄대에 시공 중인 터널의 현장계측 결과를 이용하여 역해석을 수행한 후 지진파를 고려한 수치해석을 수행하여 그로 인한 1차 지보재(록볼트, 숏크리트)의 거동 특성을 분석하였다. 지진파는 주기특성에 따라 단주기와 장주기로 구분하여 적용하였다. 수치해석 결과 지진의 주기 특성에 의한 영향은 미미한 것으로 나타났으며, 터널 천단 변위(crown displacement)는 28~31%, 단층파쇄대에 접한 좌측부의 변위는 약 14~16% 증가하는 것으로 나타났다. 기반암과 접하고 있는 우측부의 경우 약 13~27%가량 증가하는 것으로 나타났다. 숏크리트의 경우, 지진하중 고려에 따라 천단부에서의 축력이 약 113~115% 증가하였으며, 단층파쇄대와 접하고 있는 좌측부의 경우 102%, 기반암과 접하고 있는 우측부의 경우 106~110%가량 증가하는 것으로 각각 나타났다. 록볼트는 천단부, 좌측부, 우측부에서 정착지반이 단층파쇄대, 단층파쇄대와 기반암, 기반암인 경우로 선정하여 변위와 축력을 분석하였으며, 단층파쇄대와 기반암에 동시에 정착되어 있는 록볼트의 변위 및 축력이 지진으로부터 가장 취약한 것으로 나타났다.

Keywords

TNTNB3_2019_v21n2_279_f0001.png 이미지

Fig. 1. Representative tunnel cross-section

TNTNB3_2019_v21n2_279_f0002.png 이미지

Fig. 2. Ground investigation

TNTNB3_2019_v21n2_279_f0003.png 이미지

Fig. 3. Results from seismic survey

TNTNB3_2019_v21n2_279_f0004.png 이미지

Fig. 4. Results from electrical resistivity survey

TNTNB3_2019_v21n2_279_f0005.png 이미지

Fig. 5. Low resistivity zone

TNTNB3_2019_v21n2_279_f0006.png 이미지

Fig. 6. Back analysis for strength parameter of weathered zone

TNTNB3_2019_v21n2_279_f0007.png 이미지

Fig. 7. Results from field monitoring

TNTNB3_2019_v21n2_279_f0008.png 이미지

Fig. 8. Average profile of shear properties for 6 earthquake motions

TNTNB3_2019_v21n2_279_f0009.png 이미지

Fig. 9. Seismic propagation for numerical analysis

TNTNB3_2019_v21n2_279_f0010.png 이미지

Fig. 10. Mesh generation

TNTNB3_2019_v21n2_279_f0011.png 이미지

Fig. 11. Flow chart

TNTNB3_2019_v21n2_279_f0012.png 이미지

Fig. 12. Displacement for tunnel cross section

TNTNB3_2019_v21n2_279_f0013.png 이미지

Fig. 13. Normalized displacement

TNTNB3_2019_v21n2_279_f0014.png 이미지

Fig. 14. Shotcrete axial force

TNTNB3_2019_v21n2_279_f0015.png 이미지

Fig. 15. Normalized shotcrete axial force

TNTNB3_2019_v21n2_279_f0016.png 이미지

Fig. 16. Position of analyzed rockbolt

TNTNB3_2019_v21n2_279_f0017.png 이미지

Fig. 17. Rockbolt displacements

TNTNB3_2019_v21n2_279_f0018.png 이미지

Fig. 18. Rockblot axial force

Table 1. Strength parameter of weathered zone from back analysis

TNTNB3_2019_v21n2_279_t0001.png 이미지

Table 2. Material properties of ground elements

TNTNB3_2019_v21n2_279_t0002.png 이미지

Table 3. Material properties of structure elements

TNTNB3_2019_v21n2_279_t0003.png 이미지

Table 4. Rayleigh damping coefficient of materials

TNTNB3_2019_v21n2_279_t0004.png 이미지

References

  1. Architectural Institute of Korea (2009), Korea building code, pp. 85-90.
  2. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, Vol. 36, No. 1, pp. 65-78. https://doi.org/10.1680/geot.1986.36.1.65
  3. Goel, R.K., Chopra, A.K. (1998), "Period formulas for concrete shear wall buildings", Journal of Structural Engineering, Vol. 124, No. 4, pp. 426-433. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:4(426)
  4. Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Groholski, D.R., Phillips, C.A., Park, D. (2017), "Deepsoil 7.0, User Manual", pp. 1-169.
  5. Jang, D.I., Kwak, C.W., Park, I.J., Kim, C.Y. (2018), "Seismic response characteristic of the hypothetical subsea tunnel in the fault zone with various material properties", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1061-1071. https://doi.org/10.9711/KTAJ.2018.20.6.1061
  6. Kim, J.T., Cho, G.C., Kang, S.J., Kim, K.J., Hong, E.S. (2018), "3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 5, pp. 887-897. https://doi.org/10.9711/KTAJ.2018.20.5.887
  7. Koo, H.J., Kim, H.J. (2015), "Natural period and damping ratio of RC buildings for serviceability design", Journal of the Architectural Institute of Korea Structure and Construction, Vol. 31, No. 2, pp. 37-44. https://doi.org/10.5659/JAIK_SC.2015.31.2.37
  8. Kwok, A.O.L., Stewart, J.P., Hashash, Y.M.A., Matasovic, N., Pyke, R., Wang, Z., Yang, Z. (2007), "Use of exact solutions of wave propagation problem to guide implementation of nonlinear seismic ground response analysis procedures", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 11, pp. 1385. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385)
  9. Lagomarsino, S. (1993), "Forecast models for damping and vibration periods of buildings", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 48, No. 2, pp. 221-239. https://doi.org/10.1016/0167-6105(93)90138-E
  10. Lee, S.J., Kim, W.K. (2010), "Damping ratios for seismic design of SC structures", Journal of Korean Society of Steel Construction, Vol. 22, No. 5, pp. 487-496.
  11. Matinmanesh, H., Asheghabadi, S.M. (2011), "Seismic analysis on soil-structure interaction of buildings over sandy soil", Procedia Engineering, Vol. 14, No. 2011, pp. 1737-1743. https://doi.org/10.1016/j.proeng.2011.07.218
  12. Park, D.H., Shin, J.H., Yun, S.U. (2010), "Seismic analysis of tunnel in transverse direction part II: evaluation of seismic tunnel response via dynamic analysis", Vol. 26, No. 6, pp. 71-85.
  13. Plaxis bv. (2019), Plaxis reference manual.
  14. Rahgozar, M.A. (1993), "Seismic soil-structure interaction analysis of structural base shear amplification", M. Eng, Thesis, Department of Civil and Environmental Engineering, Carleton University, pp. 1-244.
  15. Saenger, E.H., Gold, N., Shapiro, S.A. (2000), "Modeling the propagation of elastic waves using a modified finite difference grid", Wave Motion, Vol. 31, No. 1, pp. 77-92. https://doi.org/10.1016/S0165-2125(99)00023-2
  16. Shin, K.J., Yeo, U.S., Lee, S.H. (2012), "Seismic resistance performance evaluation of RC moment frame for seismic waves with different response characteristic", Journal of the Architectural Institute of Korea Structure and Construction, Vol. 28, No. 4, pp. 47-54. https://doi.org/10.5659/JAIK_SC.2012.28.4.47
  17. Song, K.I., Cho, G.C., Chang, S.B. (2008), "Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 2, pp. 105-118.
  18. Sun, C.G., Chung, C.K., Kim, D.S. (2005), "A proposition of site coefficients and site classification system for design ground motions at inland of the Korean peninsula", Journal of Korean Geotechnical Society, Vol. 21, No. 6, pp. 101-115.
  19. You, K.H., Kim, S.J. (2018), "A comparative study on dynamic behavior of high-rise building and low-rise building considering SSI analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 973-987. https://doi.org/10.9711/KTAJ.2018.20.6.973
  20. Zerwer, A., Cascante, G., Hutchinson, J. (2002), "Parameter estimation in finite element simulations of rayleigh waves", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 3, pp. 250-261. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:3(250)