DOI QR코드

DOI QR Code

A Duplex PCR Assay for Rapid Detection of Phytophthora nicotianae and Thielaviopsis basicola

  • Liu, Na (College of Life Sciences, Henan Agricultural University) ;
  • Jiang, Shijun (College of Plant Protection, Henan Agricultural University) ;
  • Feng, Songli (College of Life Sciences, Henan Agricultural University) ;
  • Shang, Wenyan (College of Life Sciences, Henan Agricultural University) ;
  • Xing, Guozhen (College of Life Sciences, Henan Agricultural University) ;
  • Qiu, Rui (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science) ;
  • Li, Chengjun (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science) ;
  • Li, Shujun (Key Laboratory for green preservation & control of tobacco diseases and pests in Huanghuai Area, Tobacco Research Institute of Henan Academy of Agricultural Science) ;
  • Zheng, Wenming (College of Life Sciences, Henan Agricultural University)
  • 투고 : 2018.09.04
  • 심사 : 2018.12.28
  • 발행 : 2019.04.01

초록

A duplex PCR method was developed for simultaneous detection and identification of tobacco root rot pathogens Phytophthora nicotianae and Thielaviopsis basicola. The specific primers for P. nicotianae were developed based on its internal transcribed spacer (ITS) regions of ribosomal gene, ras gene and hgd gene, while the specific primers for T. basicola were designed based on its ITS regions and ${\beta}$-tubulin gene. The specificity of the primers was determined using isolates of P. nicotianae, T. basicola and control samples. The results showed that the target pathogens could be detected from diseased tobacco plants by a combination of the specific primers. The sensitivity limitation was $100fg/{\mu}l$ of pure genomic DNA of the pathogens. This new assay can be applied to screen out target pathogens rapidly and reliably in one PCR and will be an important tool for the identification and precise early prediction of these two destructive diseases of tobacco.

키워드

E1PPBG_2019_v35n2_172_f0001.png 이미지

Fig. 1. Duplex PCR results for Phytophthora nicotianae and Thielaviopsis basicola. (A, B) Duplex PCR for primer combination TBITS1419-F/TBITS1419-R of T. basicola with YYI-F/ YYI-R and YYH-F/YYH-R of P. nicotianae. 1: DNA mixture of T. basicola and P. nicotianae; 2: DNA mixture of P. nicotianae and T. basicola; 3: DNA of T. basicola; 4: DNA of P. nicotianae; M: DM2000 DNA Marker; CK: control (distilled water). (C, D) Duplex PCR for primer TBβ1419-F/TBβ1419-R of T. basicola combined with YYI-F/YYI-R and YYH-F/YYH-R of P. nicotianae. 1: DNA mixture of T. basicola and P. nicotianae; 2: DNA mixture of P. nicotianae and T. basicola; 3: DNA of P. nicotianae; 4: DNA of T. basicola; M: DM2000 DNA Marker; CK: control (distilled water).

Table 1. Primers for the detection of Phytophthora nicotianae and Thielaviopsis basicola

E1PPBG_2019_v35n2_172_t0001.png 이미지

참고문헌

  1. Almario, J., Kyselkova, M., Kopecky, J., Sagova-Mareckova, M., Muller, D., Grundmann, G. L. and Moenne-Loccoz, Y. 2013. Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France). Plant Soil 371:397-408. https://doi.org/10.1007/s11104-013-1677-1
  2. Anderson, T. R. and Welacky, T. W. 1988. Populations of Thielaviopsis basicola in burley tobacco field soils and the relationship between soil inoculum concentration and severity of disease on tobacco and soybean seedlings. Can. J. Plant Pathol. 10:246-251. https://doi.org/10.1080/07060668809501732
  3. Bian, C. H., Ding, Y. Q., Zhao, S. M., Li, S. J. and Kang, Y. B. 2017. Molecular identification and pathogenicity analysis of Thielaviopsis basicola in Henan Province. Tobacco Sci. Technol. 50:8-14 (in Chinese).
  4. Blair, J. E., Coffey, M. D., Park, S. Y., Geiser, D. M. and Kang, S. 2008. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 45:266-277. https://doi.org/10.1016/j.fgb.2007.10.010
  5. Chen, R. T., Zhu, X. C., Wang, Z. J., Guo, Z. Y., Dong, H. S., Wang, L. Z., Liu, Y. R. and Shi, J. K. 1997. A report of investigating and studying tobacco infectious diseases of 16 ma in tobacco producing provinces (regions) in China. Chin. Tob. Sci. 18:1-7 (in Chinese).
  6. Cheng, Y., Wang, W., Yao, J., Huang, L., Voegele, R. T., Wang, X. and Kang, Z. 2016. Two distinct Ras genes from Puccinia striiformis exhibit differential roles in rust pathogenicity and cell death. Environ. Microbiol. 18:3910-3922. https://doi.org/10.1111/1462-2920.13379
  7. Cullen, D. W., Lees, A. K., Toth, I. K. and Duncan, J. M. 2001. Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. Eur. J. Plant Pathol. 107:387-398. https://doi.org/10.1023/A:1011247826231
  8. Dodd, S. L., Hill, R. A. and Stewart, A. 2004. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol. Biochem. 36:1955-1965. https://doi.org/10.1016/j.soilbio.2004.03.012
  9. Geldenhuis, M. M., Roux, J., Wingfield, M. J. and Wingfield, B. D. 2004. Development of polymorphic markers for the root pathogen Thielaviopsis basicola using ISSR-PCR. Mol. Ecol. Notes 4:547-550. https://doi.org/10.1111/j.1471-8286.2004.00728.x
  10. Grasko, J. M., Hooper, A. J., Brown, J. W., Mcknight, C. J. and Burnett, J. R. 2009. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria. Clin. Chim. Acta 403:254-256 (in Chinese). https://doi.org/10.1016/j.cca.2009.03.032
  11. Grote, D., Olmos, A., Kofoet, A., Tuset, J. J., Bertolini, E. and Cambra, M. 2002. Specific and sensitive detection of Phytophthora nicotianae by simple and nested-PCR. Eur. J. Plant Pathol. 108:197-207. https://doi.org/10.1023/A:1015139410793
  12. Guiltinan, M. J., Velten, J., Bustos, M. M., Cyr, R. J., Schell, J. and Fosket, D. E. 1987. The expression of a chimeric soybean beta-tubulin gene in tobacco. Mol. Genet. Genomics 207:328-334. https://doi.org/10.1007/BF00331597
  13. Haudenshield, J. S., Song, J. Y. and Hartman, G. L. 2017. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element. PloS One 12:e0176567. https://doi.org/10.1371/journal.pone.0176567
  14. Huang, J. L., Wu, J. Z., Li, C. J., Xiao, C. G. and Wang, G. X. 2010. Detection of Phytophthora nicotianae in soil with realtime quantitative PCR. J. Phytopathol. 158:15-21. https://doi.org/10.1111/j.1439-0434.2009.01554.x
  15. Ippolito, A., Schena, L. and Nigro, F. 2002. Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. Eur. J. Plant Pathol. 108:855-868. https://doi.org/10.1023/A:1021208106857
  16. Kong, P., Hong, C., Jeffers, S. N. and Richardson, P. A. 2003. A Species-specific polymerase chain reaction assay for rapid detection of Phytophthora nicotianae in irrigation water. Phytopathology 93:822-831. https://doi.org/10.1094/PHYTO.2003.93.7.822
  17. Lacourt, I. and Duncan, J. M. 1997. Specific detection of Phytophthora nicotianae using the polymerase chain reaction and primers based on the DNA sequence of its elictin gene ParA1. Eur. J. Plant Pathol. 103:73-83. https://doi.org/10.1023/A:1008634222146
  18. Leclerc-Potvin, C., Balmas, V., Charest, P. M. and Jabaji-Hare, S. 1999. Development of reliable molecular markers to detect non-pathogenic binucleate Rhizoctonia isolates (AG-G) using PCR. Mycol. Res. 103:1165-1172. https://doi.org/10.1017/S0953756299008308
  19. Levesque, C. A., Harlton, C. E. and de Cock, A. W. 1998. Identification of some oomycetes by reverse dot blot hybridization. Phytopathology 88:213-222. https://doi.org/10.1094/PHYTO.1998.88.3.213
  20. Li, B., Liu, P., Xie, S., Yin, R., Weng, Q. and Chen, Q. 2015. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop-mediated isothermal amplification assays. J. Phytopathol. 163:185-193. https://doi.org/10.1111/jph.12305
  21. Li, M. Z., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95:1270-1278. https://doi.org/10.1094/PDIS-01-11-0076
  22. Markoulatos, P., Siafakas, N. and Moncany, M. 2002. Multiplex polymerase chain reaction: a practical approach. J. Clin. Lab. Anal. 16:47-51. https://doi.org/10.1002/jcla.2058
  23. Meng, J. and Wang, Y. 2010. Rapid Detection of Phytophthora nicotianae in infected tobacco tissues and soil samples based on its Ypt 1 gene. J. Phytopathol. 158:1-7. https://doi.org/10.1111/j.1439-0434.2009.01548.x
  24. Raeder, U. and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1:17-20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x
  25. Shew, H. D. 1985. Response of Phytophthora parasitica var. nicotianae to metalaxyl exposure. Plant Dis. 69:559-562. https://doi.org/10.1094/PD-69-559
  26. Shew, H. D. 1987. Effect of host resistance on spread of Phytophthora parasitica var. nicotianae and subsequent development of tobacco black shank under field conditions. Phytopathology 77:1090-1093. https://doi.org/10.1094/Phyto-77-1090
  27. Sudan, V., Jaiswal, A. K., Parashar, R. and Shanker, D. 2015. A duplex PCR based assay for simultaneous detection of Trypanosoma evansi and Theileria annulata infections in water buffaloes. Trop. Anim. Health Prod. 47:915-919. https://doi.org/10.1007/s11250-015-0808-5
  28. Tooley, P. W., Bunyard, B. A., Carras, M. M. and Hatziloukas, E. 1997. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Appl. Environ. Microbiol. 63:1467-1475. https://doi.org/10.1128/AEM.63.4.1467-1475.1997
  29. Xie, Y. H., Zhang, Y. G., Zhu, L. Q., You, D. G. and Lu, Y. 2015. Research advances in integrated management of tobacco black shank. Curr. Biotechnol. 2015:41-46 (in Chinese).
  30. Zhang, X. G., Zheng, G. S., Han, H. Y., Han, W., Shi, C. K. and Chang, C. J. 2008. RAPD PCR for diagnosis of Phytophthora parasitica var. nicotianae isolates which cause black shank on tobacco. J. Phytopathol. 149:569-574.
  31. Zhu, C. X., Wang, Y. T. and Wang, Z. F. 2002. Tobacco diseases of China. China Agriculture Press, Beijing, China. 350 pp (in Chinese).