DOI QR코드

DOI QR Code

Factors Affecting the Vineyard Populational Diversity of Plasmopara viticola

  • Received : 2018.09.19
  • Accepted : 2019.02.06
  • Published : 2019.04.01

Abstract

Vitis vinifera is very susceptible to downy mildew (Plasmopara viticola). A number of authors have suggested different genetic populations of this fungus exist in Europe, each showing a different degree of virulence. Work performed to date indicates this diversity to be the result of different factors. In areas where gene flow is greater and recombination more frequent, the diversity of P. viticola appears to be wider. In vineyards isolated by geographic barriers, a race may become dominant and produce clonal epidemics driven by asexual reproduction. The aim of the present work was to identify the conditions that influence the genetic diversity of P. viticola populations in the vineyards of northwestern Spain, where the climatic conditions for the growth of this fungus are very good. Vineyards situated in a closed, narrow valley of the interior, in more open valleys, and on the coast were sampled and the populations of P. viticola detected were differentiated at the molecular level through the examination of microsatellite markers. The populations of P. viticola represented in primary and secondary infections were investigated in the same way. The concentration of airborne sporangia in the vegetative cycle was also examined, as was the virulence of the different P. viticola populations detected. The epidemiological characteristics of the fungus differed depending on the degree of isolation of the vineyard, the airborne spore concentration, and on whether the attack was primary or secondary. Strong isolation was associated with the appearance of dominant fungal races and, therefore, reduced populational diversity.

Keywords

E1PPBG_2019_v35n2_125_f0002.png 이미지

Fig. 1. Plot locations and terrain type.

E1PPBG_2019_v35n2_125_f0003.png 이미지

Fig. 2. Airborne sporangia capture using sticky glass traps facing N, S, E and W. Two supports (A and B) were placed in each plot (at different altitudes if possible), and the traps they carried at two heights (H1 and H2 m) above the soil.

E1PPBG_2019_v35n2_125_f0004.png 이미지

Fig. 3. Micrographs of airborne sporangia (magnification 40×). Plot D had the highest concentration, and Plot A the lowest.

E1PPBG_2019_v35n2_125_f0005.png 이미지

Fig. 4. PCA performed for each plot separately, taking into account primary (oil spot) and secondary infection (mosaic spot).

Table 1. Plot locations, grape variety, altitude, years of plantation (YP), training systems, density of vines, distance between rows (dr), distance between grapevines in a row (dv), total no plants (Np), plot surface area, sampling dates, and sample size (SS)

E1PPBG_2019_v35n2_125_t0001.png 이미지

Table 4. Mean disease incidence (%) under field conditions observed on leaves and clusters

E1PPBG_2019_v35n2_125_t0004.png 이미지

Table 2. Monthly temperature (℃), rainfall (L/㎡) and relative humidity (%) at the plots

E1PPBG_2019_v35n2_125_t0009.png 이미지

Table 3. Airborne sporangia concentrations (mean and standard deviation)

E1PPBG_2019_v35n2_125_t0010.png 이미지

Table 5. Allele diversity and possible fungal genotypes

E1PPBG_2019_v35n2_125_t0011.png 이미지

Table 6. Number of alleles and genotypes, observed heterozygosity, gene diversity and polymorphism information content (PIC) of the seven P. viticola SSR loci

E1PPBG_2019_v35n2_125_t0012.png 이미지

Table 7. Summary of population genetics indices

E1PPBG_2019_v35n2_125_t0013.png 이미지

Table 8. Pairwise population matrix for Nei genetic distances (pi = primary infection; si = secondary infection)

E1PPBG_2019_v35n2_125_t0014.png 이미지

References

  1. Abu, Z. 1878. Agriculture book. Scientific Literature Library, Sevill, Spain. 512 pp (in Spanish).
  2. Boso, S., Santiago, J. L. and Martinez, M. C. 2005. A method to evaluate downy mildew resistance in grapevine. Agron. Sustain. Dev. 25:163-165. https://doi.org/10.1051/agro:2004062
  3. Boso, S., Alonso-Villaverde, V., Santiago, J. L., Gago, P. and Martinez, M. C. 2011. Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Aust. J. Grape Wine Res. 17:394-400. https://doi.org/10.1111/j.1755-0238.2011.00157.x
  4. Chen, W. J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, C. and Corio-Costet, M. F. 2007. At least two origins of fungicide resistance in grapevine downy mildew populations. Appl. Environ. Microbiol. 73:5162-5172. https://doi.org/10.1128/AEM.00507-07
  5. Delmas, C. E., Fabre, F., Jolivet, J., Mazet, I. D., Richard-Cervera, S., Deliere, L. and Delmotte, F. 2016. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evol. Appl. 9:709-725. https://doi.org/10.1111/eva.12368
  6. Delmotte, F., Chen, W. J., Richard-Cervera, S., Greif, C., Papura, D., Giresse, X., Mondor-Gemson, G. and Corio-Costet, M.-F. 2006. Microsatellite DNA markers for Plasmopara viticola, the causal agent of downy mildew of grapes. Mol. Ecol. Notes 6:379-381. https://doi.org/10.1111/j.1471-8286.2005.01240.x
  7. Delmotte, F., Machefer, V., Giresse, X., Richard-Cervera, S., Latorse, M. P. and Beffa, R. 2011. Characterization of Single-Nucleotide-Polymorphism markers for Plasmopara viticola, the causal agent of grapevine downy mildew. Appl. Environ. Microbiol. 77:7861-7863. https://doi.org/10.1128/AEM.05782-11
  8. Delmotte, F., Mestre, P., Schneider, C., Kassemeyer, H. H., Kozma, P., Richard-Cervera, S., Rouxel, M. and Deliere, L. 2014. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Infect. Genet. Evol. 27:500-508. https://doi.org/10.1016/j.meegid.2013.10.017
  9. Delye, C. and Corio-Costet, M.-F. 1998. Origin of primary infections of grape by Uncinula necator. RAPD analysis discriminates two biotypes. Mycol. Res. 102:283-288. https://doi.org/10.1017/S0953756297004632
  10. Evans, K. J., Whisson, D. L., Stummer, B. E. and Scott, E. S. 1997. DNA markers identify variation in Australian populations of Uncinula necator. Mycol. Res. 101:923-932. https://doi.org/10.1017/S0953756297003596
  11. Fontaine, M. C., Austerlitz, F., Giraud, T., Labbe, F., Papura, D., Richard-Cervera, S. and Delmotte, F. 2013. Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola. Mol. Ecol. 22:2771-2786. https://doi.org/10.1111/mec.12293
  12. Gessler, C., Pertot, I. and Perazzolli, M. 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 50:3-44.
  13. Gobbin, D., Pertot, I. and Gessler, C. 2003a. Genetic structure of a Plasmopara viticola population in an isolated Italian mountain vineyard. J. Phytopathol. 151:636-646. https://doi.org/10.1046/j.0931-1785.2003.00779.x
  14. Gobbin, D., Pertot, I. and Gessler, C. 2003b. Identification of microsatellite markers for Plasmopara viticola and establishment of high throughput method for SSR analysis. Eur. J. Plant Pathol. 109:153-164. https://doi.org/10.1023/A:1022565405974
  15. Gobbin, D., Jermini, M., Loskill, B., Pertot, I., Raynal, M. and Gessler, C. 2005. Importance of secondary inoculum of Plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathol. 54:522-534. https://doi.org/10.1111/j.1365-3059.2005.01208.x
  16. Gobbin, D., Rumbou, A., Linde, C. C. and Gessler, C. 2006. Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol. Plant Pathol. 7:519-531. https://doi.org/10.1111/j.1364-3703.2006.00357.x
  17. Gobbin, D., Bleyer, G., Keil, S., Kassemeyer, H.-H. and Gessler, C. 2007. Evidence for sporangial dispersal leading to a single infection event and a sudden high incidence of grapevine downy mildew. Plant Pathol. 56:843-847. https://doi.org/10.1111/j.1365-3059.2007.01651.x
  18. Hug, F. 2005. Genetic structure and epidemiology of Plasmopara viticola populations from Australian grape growing regions. Diploma's thesis. ETH Zurich, Switzerland.
  19. Jermini, M., Gobbin, D., Blaise, P. and Gessler, C. 2003. Influence of the overwintering methods on the germination dynamic of downy mildew (Plasmopara viticola) oospores. IOBC-WPRS Bull. 26:37-42.
  20. Jermini, M., Gobbin, D., Matasci, C. and Gessler, C. 2009. Genetic analysis of the downy mildew of grapevine (Plasmopara viticola) populations. Revue Suisse Vitic. Arboric. Hortic. 41: 213-218 (in French).
  21. Kast, W. K., Stark-Urnau, M., Seidel, M. and Gemmrich, A. R. 2001. Inter-isolate variation of virulence of Plasmopara viticola on resistant vine varieties. Bull. OILB/SROP 24:45-49.
  22. Kennelly, M. M., Eugster, C., Gadoury, D. M., Smart, C. D., Seem, R. C., Gobbin, D. and Gessler, C. 2004. Contributions of oospore inoculum to epidemics of grapevine downy mildew (Plasmopara viticola). Phytopathology 94:S50.
  23. Kennelly, M. M., Gadoury, D. M., Wilcox, W. F., Magarey, P. A. and Seem, R. C. 2007. Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology 97:512-522. https://doi.org/10.1094/PHYTO-97-4-0512
  24. Koopman, T., Linde, C. C., Fourie, P. H. and McLeod, A. 2007. Population genetic structure of Plasmopara viticola in the Western Cape Province of South Africa. Mol. Plant Pathol. 8:723-736. https://doi.org/10.1111/j.1364-3703.2007.00429.x
  25. Li, X., Yin, L., Ma, L., Zhang, Y., An, Y. and Lu, J. 2016. Pathogenicity variation and population genetic structure of Plasmopara viticola in China. J. Phytopathol. 164:863-873. https://doi.org/10.1111/jph.12505
  26. Liu, K. and Muse, S. V. 2005. PowerMarker: Integrated Analysis Environment for Genetic Marker Data. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  27. Matasci, C., Gobbin, D., Scharer, H.-J., Tamm, L. and Gessler, C. 2008. Selection for fungicide resistance throughout a growing season in populations of Plasmopara viticola. Eur. J. Plant Pathol. 120:79-83. https://doi.org/10.1007/s10658-007-9190-0
  28. Miazzi, M., Hajjeh, H. R. and Faretra, F. 2003. Observations on the population biology of the grape powdery mildew fungus Uncinula necator. J. Plant Pathol. 85:123-129.
  29. Peakall, R. and Smouse, P. E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  30. Peakall, R. and Smouse, P. E. 2012. GENALEX 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  31. Peros, J. P., Troulet, C., Guerriero, M., Michel-Romiti, C. and Notteghem, J. L. 2005. Genetic variation and population structure of the grape powdery mildew fungus, Erysiphe necator, in Southern France. Eur. J. Plant Pathol. 113:407-416. https://doi.org/10.1007/s10658-005-4563-8
  32. Peressotti, E., Wiedemann-Merdinoglu, S., Delmotte, F., Bellin, D., Di Gaspero, G., Testolin, R., Merdinoglu, D. and Mestre, P. 2010. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. BMC Plant Biol. 10:147. https://doi.org/10.1186/1471-2229-10-147
  33. Pertot, I. and Zulini, L. 2003. Studies on Plasmopara viticola oospores germination in Trentino, Italy. Integrated protection and production in viticulture. IOBC-WPRS Bull. 26:43-46.
  34. Rouxel, M., Papura, D., Nogueira, M., Machefer, V., Dezette, D., Richard-Cervera, S., Carrere, S., Mestre, P. and Delmotte, F. 2012. Microsatellite markers for characterization of native and introduced populations of Plasmopara viticola, the causal agent of grapevine downy mildew. Appl. Environ. Microbiol. 78:6337-6340. https://doi.org/10.1128/AEM.01255-12
  35. Rumbou, A. and Gessler, C. 2004. Genetic dissection of Plasmopara viticola population from a Greek vineyard in two consecutive years. Eur. J. Plant Pathol. 110:379-392. https://doi.org/10.1023/B:EJPP.0000021061.38154.22
  36. Rumbou, A. and Gessler, C. 2006. Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology 96:501-509. https://doi.org/10.1094/PHYTO-96-0501
  37. Scherer, E. and Gisi, U. 2006. Characterization of genotype and mating type in European isolates of Plasmopara viticola. J. Phytopathol. 154:489-495. https://doi.org/10.1111/j.1439-0434.2006.01136.x
  38. Stark-Urnau, M., Seidel, M., Kast, V. K. and Gemmrich, A. R. 2000. Studies on the genetic diversity of primary and secondary infections of Plasmopara viticola using RAPD/PCR. Vitis 39:163-166.
  39. Stummer, B. E., Zanker, T., Scott, E. S. and Whisson, D. L. 2000. Genetic diversity in populations of Uncinula necator: comparison of RFLP- and PCR-based approaches. Mycol. Res. 104:44-52. https://doi.org/10.1017/S0953756299001070
  40. Valsesia, G., Gobbin, D., Patocchi, A., Vecchione, A., Pertot, I. and Gessler, C. 2005. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 95:672-678. https://doi.org/10.1094/PHYTO-95-0672
  41. Yin, L., Zhang, Y., Hao, Y. and Lu, J. 2014. Genetic diversity and population structure of Plasmopara viticola in China. Eur. J. Plant Pathol. 140:365-376. https://doi.org/10.1007/s10658-014-0470-1
  42. Yin, L., An, Y., Qu, J., Li, X., Zhang, Y., Dry, I., Wu, H. and Lu, J. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci. Rep. 7:46553. https://doi.org/10.1038/srep46553
  43. Zheng, Y., Xu, S., Liu, J., Zhao, Y. and Liu, J. 2017. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers. PLoS One 12:e0177508. https://doi.org/10.1371/journal.pone.0177508