DOI QR코드

DOI QR Code

Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases

  • Jakaria, Md. (Department of Applied Life Science, Graduate School, Konkuk University) ;
  • Kim, Joonsoo (Department of Applied Life Science, Graduate School, Konkuk University) ;
  • Karthivashan, Govindarajan (Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Shin-Young (Department of Applied Life Science, Graduate School, Konkuk University) ;
  • Ganesan, Palanivel (Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Choi, Dong-Kug (Department of Applied Life Science, Graduate School, Konkuk University)
  • Received : 2017.07.05
  • Accepted : 2018.01.12
  • Published : 2019.04.15

Abstract

Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.

Keywords

References

  1. Sheikh S, Haque E, Mir SS. Neurodegenerative diseases: multifactorial conformational diseases and their therapeutic interventions. J Neurodegener Dis 2013;2013:8.
  2. Blaszczyk JW. Parkinson's disease and neurodegeneration: GABA-collapse hypothesis. Front Neurosci 2016;10.
  3. Carrell RW, Lomas DA. Conformational disease. Lancet 1997;350(9071): 134-8. https://doi.org/10.1016/S0140-6736(97)02073-4
  4. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci 2016;17(2):189. https://doi.org/10.3390/ijms17020189
  5. Chen X, Pan W. The treatment strategies for neurodegenerative diseases by integrative medicine. Integr Med Int 2014;1(4):223-5. https://doi.org/10.1159/000381546
  6. Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 2008;22(7):851-8. https://doi.org/10.1002/ptr.2384
  7. Hwang IH, Kwon YK, Cho CK, Lee YW, Sung JS, Joo JC, Lee KB, Yoo HS, Jang IS. Modified Panax ginseng extract inhibits uPAR-mediated ${\alpha}$ 5 ${\beta}1$-integrin signaling by modulating caveolin-1 to induce early apoptosis in lung cancer cells. Am J Chin Med 2016;44(05):1081-97. https://doi.org/10.1142/S0192415X16500609
  8. Leung KW, Wong AS. Ginseng and male reproductive function. Spermatogenesis 2013;3(3):e26391. https://doi.org/10.4161/spmg.26391
  9. Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 2000;71:S1-5. https://doi.org/10.1016/S0367-326X(00)00170-2
  10. Lee JS, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kang SM. Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 2014;6(2):517-29. https://doi.org/10.3390/nu6020517
  11. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 2016;40(3):203-10. https://doi.org/10.1016/j.jgr.2015.07.006
  12. Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak Y-S, Kim J-H. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng CA Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am J Chin Med 2016;44(03):595-615. https://doi.org/10.1142/S0192415X16500336
  13. Kim MH, Lee EJ, Cheon JM, Nam KJ, Oh TH, Kim KS. Antioxidant and hepatoprotective effects of fermented red ginseng against high fat diet-induced hyperlipidemia in rats. Lab Anim Res 2016;32(4):217-23. https://doi.org/10.5625/lar.2016.32.4.217
  14. Kim HJ, Lee SG, Chae IG, Kim MJ, Im NK, Yu MH, Lee EJ, Lee IS. Antioxidant effects of fermented red ginseng extracts in streptozotocin-induced diabetic rats. J Ginseng Res 2011;35(2):129-37. https://doi.org/10.5142/jgr.2011.35.2.129
  15. Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res 2017;41(1):69-77. https://doi.org/10.1016/j.jgr.2016.01.001
  16. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol-and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016.
  17. Im K, Kim J, Min H. Ginseng, the natural effectual antiviral: protective effects of Korean Red Ginseng against viral infection. J Ginseng Res 2016;40(4):309-14. https://doi.org/10.1016/j.jgr.2015.09.002
  18. Uzkeser M, Karakus E, Albayrak A, Kiki I, Bayir Y, Cadirci E, Unal D, Halici Z, Karadeniz A. Protective effect of Panax ginseng against N-acetyl-p-aminophenol-induced hepatotoxicity in rats. African J Pharmacy and Pharmacol 2012;6(36):2634-42. https://doi.org/10.5897/AJPP12.658
  19. Lim KH, Ko D, Kim JH. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res 2013;37(3):273-82. https://doi.org/10.5142/jgr.2013.37.273
  20. Lee LS, Cho CW, Hong HD, Lee YC, Choi UK, Kim YC. Hypolipidemic and antioxidant properties of phenolic compound-rich extracts from white ginseng (Panax ginseng) in cholesterol-fed rabbits. Molecules 2013;18(10): 12548-60. https://doi.org/10.3390/molecules181012548
  21. Shin HS, Yu M, Kim M, Choi HS, Kang DH. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. Lab Investig 2014;94(10):1147-60. https://doi.org/10.1038/labinvest.2014.101
  22. Kim EH, Kim IH, Ha JA, Choi KT, Pyo S, Rhee DK. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4. J Ginseng Res 2013;37(3):315-23. https://doi.org/10.5142/jgr.2013.37.315
  23. Kim Y, Choi EH, Doo M, Kim JY, Kim CJ, Kim CT, Kim IH. Anti-stress effects of ginseng via down-regulation of tyrosine hydroxylase (TH) and dopamine ${\beta}$-hydroxylase (DBH) gene expression in immobilization-stressed rats and PC12 cells. Nutr Res Prac 2010;4(4):270-5. https://doi.org/10.4162/nrp.2010.4.4.270
  24. Feng L, Liu XM, Cao FR, Wang LS, Chen YX, Liao YH, Wang Q, Chang Q. Antistress effects of ginseng total saponins on hindlimb-unloaded rats assessed by a metabolomics study. J Ethnopharmacol 2016;188:39-47. https://doi.org/10.1016/j.jep.2016.04.028
  25. Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W, Wang Y. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2009;33(8):1417-24. https://doi.org/10.1016/j.pnpbp.2009.07.020
  26. He DF, Ren YP, Liu MY. Effects of ginseng fruit saponins on serotonin system in Sprague-Dawley rats with myocardial infarction, depression, and myocardial infarction complicated with depression. Chin Med J (Engl) 2016;129(24):2913. https://doi.org/10.4103/0366-6999.195462
  27. Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 2002;173(2):224-34. https://doi.org/10.1006/exnr.2001.7841
  28. Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson's disease. Exp Neurol 2003;184(1):521-9. https://doi.org/10.1016/j.expneurol.2003.08.002
  29. Naval M, Gomez-Serranillos M, Carretero M, Villar A. Neuroprotective effect of a ginseng (Panax ginseng) root extract on astrocytes primary culture. J Ethnopharmacol 2007;112(2):262-70. https://doi.org/10.1016/j.jep.2007.03.010
  30. Seo JY, Ju SH, Oh J, Lee SK, Kim JS. Neuroprotective and cognition-enhancing effects of compound K isolated from red ginseng. J Agric Food Chem 2016;64(14):2855-64. https://doi.org/10.1021/acs.jafc.5b05789
  31. Christensen LP. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2008;55:1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
  32. Radad K, Moldzio R, Rausch WD. Ginsenosides and their CNS targets. CNS Neu Ther 2011;17(6):761-8. https://doi.org/10.1111/j.1755-5949.2010.00208.x
  33. Rokot NT, Kairupan TS, Cheng KC, Runtuwene J, Kapantow NH, Amitani M, Morinaga A, Amitani H, Asakawa A, Inui A. A role of ginseng and its constituents in the treatment of central nervous system disorders. Evid Based Complement Alternat Med 2016;2016.
  34. Yeo HB, Yoon HK, Lee HJ, Kang SG, Jung KY, Kim L. Effects of Korean red ginseng on cognitive and motor function: a double-blind, randomized, placebo-controlled trial. J Ginseng Res 2012;36(2):190-7. https://doi.org/10.5142/jgr.2012.36.2.190
  35. Kim JH, Hong YH, Lee JH, Kim DH, Nam G, Jeong SM, Lee BH, Lee SM, Nah SY. A role for the carbohydrate portion of ginsenoside Rg 3 in $Na^{+}$ channel inhibition. Mol Cells 2005;19(1):137-42.
  36. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Kim DH, Rhim H, Kim SS. Characteristics of ginsenoside Rg3-mediated brain $Na^{+}$ current inhibition. Mol Pharmacol 2005;68(4):1114-26. https://doi.org/10.1124/mol.105.015115
  37. Duan Y, Nicholson RA. 20 (S)-protopanaxadiol and the ginsenoside Rh 2 inhibit $Na^{+}$ channel-activated depolarization and $Na^{+}$ channel-dependent amino acid neurotransmitter release in synaptic fractions isolated from mammalian brain. Comp Biochem Physiol C Toxicol Pharmacol 2008;147(3):351-6. https://doi.org/10.1016/j.cbpc.2008.01.001
  38. Choi SH, Shin TJ, Lee BH, Hwang SH, Lee SM, Lee BC, Park CS, Ha TS, Nah SY. Ginsenoside Rg3 enhances large conductance $Ca^{2+}$-activated potassium channel currents: a role of Tyr360 residue. Mol Cells 2011 Feb;31(2):133-40.
  39. Choi S, Jung SY, Ko YS, Koh SR, Rhim H, Nah SY. Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes. Mol Pharm 2002;61(4):928-35. https://doi.org/10.1124/mol.61.4.928
  40. Kim S, Nah SY, Rhim H. Neuroprotective effects of ginseng saponins against L-type $Ca^{2+}$ channel-mediated cell death in rat cortical neurons. Biochem Biophys Res Commun 2008;365(3):399-405. https://doi.org/10.1016/j.bbrc.2007.10.048
  41. Choi SH, Lee BH, Hwang SH, Kim HJ, Lee SM, Kim HC, Rhim HW, Nah SY. Molecular mechanisms of large-conductance $Ca^{2+}$-activated potassium channel activation by ginseng gintonin. Evid Based Complement Alternat Med 2013;2013.
  42. Zhang YF, Fan XJ, Li X, Peng LL, Wang GH, Ke KF, Jiang ZL. Ginsenoside Rg 1 protects neurons from hypoxiceischemic injury possibly by inhibiting $Ca^{2+}$ influx through NMDA receptors and L-type voltage-dependent $Ca^{2+}$ channels. Eur J Pharmacol 2008;586(1):90-9. https://doi.org/10.1016/j.ejphar.2007.12.037
  43. Quan QK, Li X, Yuan HF, Wang Y, Liu WL. Ginsenoside Rg1 inhibits highvoltage-activated calcium channel currents in hippocampal neurons of betaamyloid peptide-exposed rat brain slices. Chinese J Integr Med 2016:1-6. https://doi.org/10.1007/bf02857421
  44. Lin ZY, Chen LM, Zhang J, Pan XD, Zhu YG, Ye QY, Huang HP, Chen XC. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons. Acta Pharmacol Sin 2012;33(4):438-44. https://doi.org/10.1038/aps.2011.181
  45. Choi S, Jung SY, Lee JH, Sala F, Criado M, Mulet J, Valor LM, Sala S, Engel AG, Nah SY. Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur J Pharmacol 2002;442(1):37-45. https://doi.org/10.1016/S0014-2999(02)01508-X
  46. Sala F, Mulet J, Choi S, Jung SY, Nah SY, Rhim H, Valor LM, Criado M, Sala S. Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2002;301(3):1052-9. https://doi.org/10.1124/jpet.301.3.1052
  47. Lee BH, Choi SH, Hwang SH, Kim HJ, Lee SM, Kim HC, Rhim H, Nah SY. Effects of ginsenoside Rg3 on ${\alpha}9{\alpha}10$ nicotinic acetylcholine receptor-mediated ion currents. Biol Pharm Bull 2013;36(5):812-8. https://doi.org/10.1248/bpb.b12-01009
  48. Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative effect of ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system. Neurochem Res 2017;42(5):1299-307. https://doi.org/10.1007/s11064-016-2171-y
  49. Kim MS, Yu JM, Kim HJ, Kim HB, Kim ST, Jang SK, Choi YW, Lee DI, Joo SS. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biol Pharm Bull 2014;37(5):826-33. https://doi.org/10.1248/bpb.b14-00011
  50. Kimura T, Saunders P, Kim H, Rheu H, Oh K, Ho I. Interactions of ginsenosides with ligand-bindings of GABAA and GABAB receptors. Gen Pharmacol 1994;25(1):193-9. https://doi.org/10.1016/0306-3623(94)90032-9
  51. Kim HS, Hwang SL, Nah SY, Oh S. Changes of [3H] MK-801,[3H] muscimol and [3H] flunitrazepam binding in rat brain by the prolonged ventricular infusion of ginsenoside Rc and Rg1. Pharmacol Res 2001;43(5):473-9. https://doi.org/10.1006/phrs.2001.0809
  52. Choi SE, Choi S, Lee JH, Whiting PJ, Lee SM, Nah SY. Effects of ginsenosides on GABA A receptor channels expressed in Xenopus oocytes. Arch Pharm Res 2003;26(1):28-33. https://doi.org/10.1007/BF03179927
  53. Lee BH, Choi SH, Shin TJ, Hwang SH, Kang J, Kim HJ, Kim BJ, Nah SY. Effects of ginsenoside metabolites on GABAA receptor-mediated ion currents. J Ginseng Res 2012;36(1):55. https://doi.org/10.5142/jgr.2012.36.1.55
  54. Bae MY, Cho JH, Choi IS, Park HM, Lee MG, Kim DH, Jang IS. Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J Neurochem 2010;114(4):1085-96. https://doi.org/10.1111/j.1471-4159.2010.06833.x
  55. Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci 2016;10.
  56. Kim S, Ahn K, Oh TH, Nah SY, Rhim H. Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun 2002;296(2):247-54. https://doi.org/10.1016/S0006-291X(02)00870-7
  57. Seong Y, ChangSik S, HackSeang K. Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured astrocytes. Biol Pharm Bull 1995;18(12):1776-8. https://doi.org/10.1248/bpb.18.1776
  58. Kim Y, Kim S, Markelonis G, Oh T. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 1998;53(4):426-32. https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  59. Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 2009;87(8):1904-12. https://doi.org/10.1002/jnr.22017
  60. Gu B, Nakamichi N, Zhang WS, Nakamura Y, Kambe Y, Fukumori R, Takuma K, Yamada K, Takarada T, Taniura H. Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by N-methyl-Daspartate receptors composed of an NR1/NR2B subunit assembly. J Neurosci Res 2009;87(9):2145-56. https://doi.org/10.1002/jnr.22021
  61. Yoon SR, Nah JJ, Shin YH, Kim SK, Nam KY, Choi HS, Nah SY. Ginsenosides induce differential antinociception and inhibit substance P inducednociceptive response in mice. Life Sci 1998;62(21):319-25.
  62. Shin YH, Jung OM, Nah JJ, Nam KY, Kim CY, Nah SY. Ginsenosides that produce differential antinociception in mice. Gen Pharmacol 1999;32(6):653-9. https://doi.org/10.1016/S0306-3623(98)00239-0
  63. Lee JH, Kim SR, Bae CS, Kim D, Hong HN, Nah SY. Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid-induced neurotoxicity in rat hippocampus. Neurosci Lett 2002;325(2):129-33. https://doi.org/10.1016/S0304-3940(02)00256-2
  64. Peng LL, Shen HM, Jiang ZL, Li X, Wang GH, Zhang YF, Ke KF. Inhibition of NMDA receptors underlies the neuroprotective effect of ginsenoside Rb3. Am J Chin Med 2009;37(4):759-70. https://doi.org/10.1142/S0192415X09007223
  65. Lee E, Kim S, Chung KC, Choo MK, Kim DH, Nam G, Rhim H. 20 (S)-ginsenoside Rh 2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol 2006;536(1):69-77. https://doi.org/10.1016/j.ejphar.2006.02.038
  66. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee S-M, Chung JM. Neuroprotective effects of ginsenoside Rg 3 against homocysteineinduced excitotoxicity in rat hippocampus. Brain Res 2007;1136:190-9. https://doi.org/10.1016/j.brainres.2006.12.047
  67. Shin TJ, Hwang SH, Choi SH, Lee BH, Kang J, Kim HJ, Zukin RS, Rhim H, Nah SY. Effects of protopanaxatriol-ginsenoside metabolites on rat Nmethyl-d-aspartic Acid receptor-mediated ion currents. Korean J Physiol Pharmacol 2012;16(2):113-8. https://doi.org/10.4196/kjpp.2012.16.2.113
  68. Chen WZ, Liu S, Chen FF, Zhou CJ, Yu J, Zhuang CL, Shen X, Chen BC, Yu Z. Prevention of postoperative fatigue syndrome in rat model by ginsenoside Rb1 via down-regulation of inflammation along the NMDA receptor pathway in the hippocampus. Biol Pharm Bull 2015;38(2):239-47. https://doi.org/10.1248/bpb.b14-00599
  69. Zhao BS, Liu Y, Gao XY, Zhai HQ, Guo JY, Wang XY. Effects of ginsenoside Rg1 on the expression of toll-like receptor 3, 4 and their signalling transduction factors in the NG108-15 murine neuroglial cell line. Molecules 2014;19(10): 16925-36. https://doi.org/10.3390/molecules191016925
  70. Bak MJ, Hong SG, Lee JW, Jeong WS. Red ginseng marc oil inhibits iNOS and COX-2 via $NF{\kappa}B$ and p38 pathways in LPS-stimulated RAW 264.7 macrophages. Molecules 2012;17(12):13769-86. https://doi.org/10.3390/molecules171213769
  71. Fan Y, Sun C, Gao X, Wang F, Li X, Kassim RM, Tai G, Zhou Y. Neuroprotective effects of ginseng pectin through the activation of ERK/MAPK and Akt survival signaling pathways. Mol Med Rep 2012;5(5):1185-90. https://doi.org/10.3892/mmr.2012.811
  72. Ahn S, Singh P, Castro-Aceituno V, Yesmin Simu S, Kim YJ, Mathiyalagan R, Yang DC. Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory-mediators production via blockade of NF-${\kappa}B$ activation in macrophages. Artif Cells Nanomed Biotechnol 2017;45(2):270-6. https://doi.org/10.1080/21691401.2016.1228661
  73. Saba E, Jeon BR, Jeong DH, Lee K, Goo YK, Kwak D, Kim S, Roh SS, Kim SD, Nah SY. A novel Korean Red Ginseng compound gintonin inhibited inflammation by MAPK and NF-${\kappa}B$ pathways and recovered the levels of mir-34a and mir-93 in RAW 264.7 cells. Evid Based Complement Alternat Med 2015;2015.
  74. Song J, Chen X, Zhang J, Huang T, Zeng Y, Shen J, Chen L. JNK/p38 MAPK involves in ginsenoside Rb1 attenuating beta-amyloid peptide (25-35)-induced tau protein hyperphosphorylation in embryo rat cortical neurons. Yao Xue Xue Bao 2008;43(1):29-34.
  75. Hashimoto R, Yu J, Koizumi H, Ouchi Y, Okabe T. Ginsenoside Rb1 prevents $MPP^{+}$-induced apoptosis in PC12 cells by stimulating estrogen receptors with consequent activation of ERK1/2, Akt and inhibition of SAPK/JNK, p38 MAPK. Evid Based Complement Alternat Med 2012;2012.
  76. Wu SD, Xia F, Lin XM, Duan KL, Wang F, Lu QL, Cao H, Qian YH, Shi M. Ginsenoside-Rd promotes neurite outgrowth of PC12 cells through MAPK/ERK-and PI3K/AKT-dependent pathways. Int J Mol Sci 2016;17(2):177. https://doi.org/10.3390/ijms17020177
  77. Cong L, Chen W. Neuroprotective effect of ginsenoside Rd in spinal cord injury rats. Basic Clin Pharmacol Toxicol 2016;119(2):193-201. https://doi.org/10.1111/bcpt.12562
  78. Lu MC, Lai TY, Hwang JM, Chen HT, Chang SH, Tsai FJ, Wang HL, Lin CC, Kuo WW, Huang CY. Proliferation-and migration-enhancing effects of ginseng and ginsenoside Rg1 through IGF-I-and FGF-2-signaling pathways on RSC96 Schwann cells. Cell Biochem Funct 2009;27(4):186-92. https://doi.org/10.1002/cbf.1554
  79. Zong Y, Ai QL, Zhong LM, Dai JN, Yang P, He Y, Sun J, Ling EA, Lu D. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase C-${\gamma}1$ signaling pathway in murine BV-2 microglial cells. Curr Med Chem 2012;19(5):770-9. https://doi.org/10.2174/092986712798992066
  80. Huang L, Liu LF, Liu J, Dou L, Wang GY, Liu XQ, Yuan QL. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons. Neural Regen Res 2016;11(2):319-25. https://doi.org/10.4103/1673-5374.177741
  81. Hu JF, Xue W, Ning N, Zhang JT, Chen NH. Ginsenoside Rg1 activated $CaMKII{\alpha}$ mediated extracellular signal-regulated kinase/mitogen activated protein kinase signaling pathway. Acta Pharmacol Sin 2008;29(9):1119-26. https://doi.org/10.1111/j.1745-7254.2008.00867.x
  82. Lee YY, Park JS, Jung JS, Kim DH, Kim HS. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 2013;14(5):9820-33. https://doi.org/10.3390/ijms14059820
  83. Meng X, Sun G, Ye J, Xu H, Wang H, Sun X. Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: a novel mechanism of Nrf2/ARE signaling activation. Free Radic Res 2014;48(4):445-60. https://doi.org/10.3109/10715762.2014.885117
  84. Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS. Ginseng saponin metabolite suppresses phorbol estereinduced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer 2006;118(2):490-7. https://doi.org/10.1002/ijc.21356
  85. Zhang Y, Lin L, Liu G, Liu J, Li T. Pharmacokinetics and brain distribution of ginsenosides after administration of sailuotong. Zhongguo Zhong Yao Za Zhi 2014;39(2):316-21.
  86. Tan X, Gu J, Zhao B, Wang S, Yuan J, Wang C, Chen J, Liu J, Feng L, Jia X. Ginseng improves cognitive deficit via the RAGE/NF-${\kappa}B$ pathway in advanced glycation end product-induced rats. J Ginseng Res 2015;39(2):116-24. https://doi.org/10.1016/j.jgr.2014.09.002
  87. Liu J, Yan X, Li L, Li Y, Zhou L, Zhang X, Hu X, Zhao G. Ginsenoside Rd improves learning and memory ability in APP transgenic mice. J Mol Neurosci 2015;57(4):522-8. https://doi.org/10.1007/s12031-015-0632-4
  88. Kim J, Shim J, Lee S, Cho WH, Hong E, Lee JH, Han JS, Lee HJ, Lee KW. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC Complement Altern Med 2016;16(1):66. https://doi.org/10.1186/s12906-016-1050-z
  89. Lee KW, Jung SY, Choi SM, Yang EJ. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement Altern Med 2012;12(1):196. https://doi.org/10.1186/1472-6882-12-S1-P196
  90. Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, Kim DH, Hyun JW, Shin CY, Kim HS. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 2010;115(6): 1668-80. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  91. Kou J, Liu Q, Guan T, Wang Y, Lv Y, Huang Y, Cao Z, Yu B. Ginsenoside Rg1 protects hydrogen peroxide-induced PC12 cell death: involvement of NMMHC IIA-NF-${\kappa}B$/p65 pathway (1143.15). The FASEB J 2014;28(1). 1143-1215.
  92. Wang Y, Liu Q, Xu Y, Zhang Y, Lv Y, Tan Y, Jiang N, Cao G, Ma X, Wang J. Ginsenoside Rg1 protects against oxidative stress-induced neuronal apoptosis through myosin IIA-actin related cytoskeletal reorganization. Int J Biol Sci 2016;12(11):1341. https://doi.org/10.7150/ijbs.15992
  93. Zhao P, Teng J, Zhu H, Zheng Y, Zhu X. Ginsenoside Rg1 prevents $MPP^{+}$-induced apoptosis of SHSY5Y cells via the inhibition of a Bax-mediated mitochondrial pathway and by suppressing oxidative stress. Int J Clin Exp Med 2016;9(6):10811-9.
  94. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep 1899;6(4):435-40. https://doi.org/10.3892/br.2017.864
  95. Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 2013;8(11):e79399. https://doi.org/10.1371/journal.pone.0079399
  96. Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y, Zhang J, Yang J. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of dgalactose/AlCl 3 inducing rats model of Alzheimer's disease. J Ethnopharmacol 2016;179:162-9. https://doi.org/10.1016/j.jep.2015.12.020
  97. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152. https://doi.org/10.3389/fphar.2013.00152
  98. Liu Y, Zhang R-Y, Zhao J, Dong Z, Feng D-Y, Wu R, Shi M, Zhao G. Ginsenoside Rd protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced injury. Int J Mol Sci 2015;16(7):14395-408. https://doi.org/10.3390/ijms160714395
  99. Wang X, Wang C, Wang J, Zhao S, Zhang K, Wang J, Zhang W, Wu C, Yang J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-${\kappa}B$, MAPKs and Akt signaling pathways. Neuropharmacology 2014;79:642-56. https://doi.org/10.1016/j.neuropharm.2014.01.022
  100. Gao QG, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem 2009;109(5):1338-47. https://doi.org/10.1111/j.1471-4159.2009.06051.x
  101. Xu L, Chen WF, Wong MS. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. Br J Pharmacol 2009;158(3):738-48. https://doi.org/10.1111/j.1476-5381.2009.00361.x
  102. Choi JH, Lee MJ, Jang M, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and up-regulating Nrf2 signaling in the amygdala. J Ginseng Res 2018;42(1):107-15. https://doi.org/10.1016/j.jgr.2017.04.012
  103. Ye J, Yao JP, Wang X, Zheng M, Li P, He C, Wan JB, Yao X, Su H. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016;13(4):3083-91. https://doi.org/10.3892/mmr.2016.4914
  104. Ni N, Liu Q, Ren H, Wu D, Luo C, Li P, Wan JB, Su H. Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 2014;19(3): 3012-24. https://doi.org/10.3390/molecules19033012
  105. Du X, Xu H, Jiang H, Xie J. Akt/Nrf2 activated upregulation of heme oxygenase-1 involves in the role of Rg1 against ferrous iron-induced neurotoxicity in SK-N-SH cells. Neurotox Res 2013;24(1):71-9. https://doi.org/10.1007/s12640-012-9362-3
  106. Lee YY, Park JS, Lee EJ, Lee SY, Kim DH, Kang JL, Kim HS. Anti-inflammatory mechanism of ginseng saponin metabolite Rh3 in lipopolysaccharidestimulated microglia: critical role of 5'-adenosine monophosphate-activated protein kinase signaling pathway. J Agric Food Chem 2015;63(13):3472-80. https://doi.org/10.1021/jf506110y
  107. Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ, Wen ZL, Xia CY, Mou Z, Wang ZZ, He WB, et al. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015;36(3):311-22. https://doi.org/10.1038/aps.2014.107
  108. Hussein J, Refaat E, Medhat D, El-Bana M, Latif YA, Farrag AR, Nazeef N, Moify M. Panax ginseng attenuates experimental brain injury by increasing brainderived neurotrophic factor and inhibition of neuroinflammation. J Chem Pharm Res 2016;8(1):186-95.
  109. Si Y, Zhu J, Huang X, Zhu P, Xie C. Effects of Panax notoginseng saponins on proliferation and differentiation of rat embryonic cortical neural stem cells. J Chin Med Assoc 2016;79(5):256-63. https://doi.org/10.1016/j.jcma.2015.10.011
  110. Li F, Wu X, Li J, Niu Q. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model. Mol Med Rep 2016;13(6):4904-10. https://doi.org/10.3892/mmr.2016.5103
  111. Zhu G, Wang Y, Li J, Wang J. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 2015;292:81-9. https://doi.org/10.1016/j.neuroscience.2015.02.031
  112. Gao XQ, Yang CX, Chen GJ, Wang GY, Chen B, Tan SK, Liu J, Yuan QL. Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol 2010;132(2):393-9. https://doi.org/10.1016/j.jep.2010.07.033
  113. Jiang Z, Wang Y, Zhang X, Peng T, Lu Y, Leng J, Xie Q. Preventive and therapeutic effects of ginsenoside Rb1 for neural injury during cerebral infarction in rats. Am J Chin Med 2013;41(02):341-52. https://doi.org/10.1142/S0192415X13500250
  114. Cui J, Jiang L, Xiang H. Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol 2012;26(5):697-713. https://doi.org/10.1177/0269881111415735
  115. Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 2012;166(6):1872-87. https://doi.org/10.1111/j.1476-5381.2012.01902.x
  116. Zhu X, Gao R, Liu Z, Cheng Z, Qi Y, Fan C, Yu SY. Ginsenoside Rg1 reverses stressinduced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex. Eur J Neurosci 2016;44(2):1878-85. https://doi.org/10.1111/ejn.13255
  117. You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z, Chen C, Li L. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med 2016:1-13. https://doi.org/10.1007/s11418-012-0636-0
  118. Guo J, Chang L, Zhang X, Pei S, Yu M, Gao J. Ginsenoside compound K promotes ${\beta}$-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp Ther Med 2014;8(4):1271-4. https://doi.org/10.3892/etm.2014.1885
  119. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/${\beta}$-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2016;101:480-9. https://doi.org/10.1016/j.neuropharm.2015.10.024

Cited by

  1. Active ginseng components in cognitive impairment: Therapeutic potential and prospects for delivery and clinical study vol.9, pp.71, 2018, https://doi.org/10.18632/oncotarget.26035
  2. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2019, https://doi.org/10.1080/13543776.2019.1556258
  3. Interspecies hybrids of Panax ginseng Meyer new line 0837 and Panax quinquefolius generated superior F1 hybrids with greater biomass and ginsenoside contents vol.60, pp.4, 2019, https://doi.org/10.1007/s13580-019-00154-4
  4. The Methanol Extract of Allium cepa L. Protects Inflammatory Markers in LPS-Induced BV-2 Microglial Cells and Upregulates the Antiapoptotic Gene and Antioxidant Enzymes in N27-A Cells vol.8, pp.9, 2019, https://doi.org/10.3390/antiox8090348
  5. Potential Therapeutic Targets of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment vol.8, pp.11, 2019, https://doi.org/10.3390/jcm8111789
  6. Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology vol.11, 2019, https://doi.org/10.3389/fphar.2020.00694
  7. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits vol.9, pp.2, 2019, https://doi.org/10.3390/cells9020506
  8. Evaluation of carbon tetrachloride fraction of Actinodaphne angustifolia Nees (Lauraceae) leaf extract for antioxidant, cytotoxic, thrombolytic and antidiarrheal properties vol.40, pp.6, 2020, https://doi.org/10.1042/bsr20201110
  9. Study on Mechanism of Ginkgo biloba L. Leaves for the Treatment of Neurodegenerative Diseases Based on Network Pharmacology vol.46, pp.7, 2021, https://doi.org/10.1007/s11064-021-03315-z
  10. Nutraceuticals in mental diseases - Bridging the gap between traditional use and modern pharmacology vol.61, 2019, https://doi.org/10.1016/j.coph.2021.08.017