DOI QR코드

DOI QR Code

저층수 배출관에 유입된 사석의 배제 한계조건

Threshold Condition for Exclusion of Riprap into Bypass Pipe

  • 정석일 ((주)하이드로봇테크앤리서치) ;
  • 이승오 (홍익대학교 토목공학과)
  • Jeong, Seokil (Hydrobot Tech and Research (Former Ph.D Graduate Student, Hongik University)) ;
  • Lee, Seung Oh (Department of Civil Engineering, Hongik University)
  • 투고 : 2019.02.26
  • 심사 : 2019.03.20
  • 발행 : 2019.03.31

초록

국내 중소하천에 설치된 콘트리트 보에서 발생하는 많은 문제 중에서 상류로부터 유입되는 유사가 보 직상류에 퇴적되는 문제가 심각하다. 이로 인해 하류에 유사공급이 원활치 못하게 되며, 퇴적된 유사가 오염물과 흡착될 경우, 하상 오염뿐만 아니라 하천 생태계에 치명적인 피해를 유발할 수 있다. 보 직상류의 유사 퇴적문제를 해결하는 방안 중 하상에 배사관을 매설하여 퇴적되는 유사를 하류로 배출하고 있다. 그러나 배사관에 적정크기 이상의 사석 등이 유입될 경우, 배사효율은 현격하게 낮아지므로, 이에 대한 가이드라인 내지는 한계조건 제시가 필요하다. 본 연구에서는 상하류 수위차, 사석의 직경 등을 주요변수로 선정한 후, 3차원 수치모의 결과를 활용하여 사석 배제 능력에 대한 한계 조건을 도출하였다. 상류흐름은 정류된 상태로 가정하였고, 배사관을 포함하여 상 하류간 검사체적에서 에너지 개념을 적용하여 분석을 수행하였다. 그 결과 수위차와 사석지름의 비로 나타낸 무차원 변수가 약 1.2인 경우, 배사관 내 사석의 배출유뮤를 명확히 결정할 수 있었다. 본 연구결과는 향후 점성이 높은 유사나 흡착성 유사 등의 특성을 고려한다면 배사관이 있는 고정보의 운영관리방안에 활용될 수 있을 것이라 기대한다.

One of the most serious problems with concrete small dams or barriers installed in small/median rivers is the deposit of sediments, especially, in Korea. An effective way to discharge such sediments to downstream is to construct a bypass pipe under the river bed. However, efficiency may become lowered if ripraps are entered into the bypass pipe. Therefore, in this study, we derived the threshold condition for the exclusion of ripraps from the bypass pipe using 3D numerical analysis. Upstream flow of the small dam was assumed to be stationary, and the energy concept was applied to the control volume containing the bypass pipe and its periphery. As a result, when the ratio of the water level difference between upstream and downstream to the diameter of the riprap was approximately equal to 1.2, the threshold condition for exclusion of the stones or riprap from the bypass pipe was affirmatively determined. If the characteristics of the adsorptive sediment adversely affecting the river environment in the future would be taken into account, results from this study are expected to put to practical use in the management of concrete small dam with bypass pipe system.

키워드

HKBJBA_2019_v12n1_57_f0001.png 이미지

Fig. 1. Conceptual sketch showing side view of experimental channel (Jeong and Lee, 2017)

HKBJBA_2019_v12n1_57_f0002.png 이미지

Fig. 2. Enlarged sketch of bypass pipe (Jeong and Lee, 2017)

HKBJBA_2019_v12n1_57_f0003.png 이미지

Fig. 3. Experimental scene (Jeong and Lee, 2017)

HKBJBA_2019_v12n1_57_f0004.png 이미지

Fig. 4. Comparison of experiments and 3D simulations using dimensionless parameters

HKBJBA_2019_v12n1_57_f0005.png 이미지

Fig. 5. Simulation scenes for moving of riprap in Sand-exclusion pipe

HKBJBA_2019_v12n1_57_f0006.png 이미지

Fig. 6. Threshold condition for exclusion of riprap in bypass pipe

Table 1. Dimensions of Bypass pipe (Jeong and Lee, 2017)

HKBJBA_2019_v12n1_57_t0001.png 이미지

Table 2. Simulation cases for verification of FLOW-3D

HKBJBA_2019_v12n1_57_t0002.png 이미지

참고문헌

  1. Ahlf, W., Hollert, H., Neumann-Hensel, H., and Ricking, M. (2002). A guidance for the assessment and evaluation of sediment quality a Approach based on ecotoxicological and chemical measurements. Journal of Soils and Sediments. 2(1): 37-42. https://doi.org/10.1007/BF02991249
  2. Ann, J. H., Jnag, S. H., Choi, W. S., and Yoon, Y. N. (2006). An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (2) -Sediment Distribution and Reduction Method in Reservoir. Jounal of Korean society on water environment. 22(6): 1094-1100.
  3. Batalla, R. J. and Vericat, D. (2009). Hydrological and sediment transport dynamics of flushing flows: implications for management in large Mediterranean rivers. River Research and Applications. 25(3): 297-314. https://doi.org/10.1002/rra.1160
  4. Bechtler, W. and NUJIA, M. (1996). Predicting Reservoir Sedimentation with 2D Model FLOODSIM. 1: 1.
  5. Chang, H. H., Harrison, L. L., Lee, W., and Tu, S. (1996). Numerical modeling for sediment-pass-through reservoirs, Journal of Hydraulic Engineering. 122(7): 381-388. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:7(381)
  6. D'Rohan, W. (1911). The silting up of reservoirs and canals and some methods for preventing same. Engin and Contract. 35: 56-58.
  7. Fan. J. and Morris, G. L. (1980). On method for the desiltation of reservoirs, International Seminar of Experts on Reservoir Desiltation, Tunis, Tunisia.
  8. Flow science (2012). FLOW-3D User manual.
  9. Forstner, U. and Muller, G. (1974). Schwermetalle in Flussen und Seen. Springer-Verlag. Heidelberg. 225.
  10. Hollert, H., Duerr, M., Erdinger, L., and Braunbeck, T. (2000). Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood. Environmental Toxicology and Chemistry. 19(3): 528-534. https://doi.org/10.1002/etc.5620190302
  11. Jowett, I. (1984). Sedimentation in New Zealnad Hydroelectri Schemes. Water Intrernational. 9(4): 172-176. https://doi.org/10.1080/02508068408686533
  12. Jeong, S. I. and Lee, S. O. (2016). Experimental Study for Flushing of Sediment Bypass pipe underneath Rubber Weir. Journal of the Korean Society of Safety. 31(5): 133-140. https://doi.org/10.14346/JKOSOS.2016.31.5.133
  13. Jeong, S. I. and Lee, S. O. (2017). A Experimental Study on Exclusion Ability of Riprap into Bypass Pipe. Journal of the Korean Society of Civil Engineering. 37(1): 239-246. https://doi.org/10.12652/Ksce.2017.37.1.0239
  14. Ministry of Agriculture and Forestry. (1998). Agricultural Production Infrastructure Improvement Project Plan Design Standards.
  15. Ministry of Environment. (1990). Survey report on the effect of dredging the Paldang Reservoir.
  16. National Institute of Environmental Research. (1998). Feasibility review dredging of the Faldal reservoir deposit
  17. Schiller, L. and Naumann, A. (1933). Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Dtsch. Ing. 77(12): 318-320.