Fig. 1. The first layer of Retrieved Temperature Profile of the MYD07L2 data. This MODIS image contains the observation at 05:55 on July 19 in 2017.
Fig. 2. The flow chart of readGDAL_HDF function.
Fig. 3. The flow chart of the R script implementedto measure the execution time for thereadGDAL HDF function.
Fig. 4. The wall clock time to read 2-D variables contained within a MOD07 product data file in HDF using the readGDAL_HDF tool. The tool was built linking agianst the GDAL compiled under different operating systems, distribution package, compilers, and configuration. ubuntu and suse indicate Ubuntu and OpenSUSE operating systems, respectively. gcc and icc represent GNU and Inter compilers, respectively. Deb and rpm represent the GDAL package distributed by Ubuntu and OpenSUSE, respectively. nohdf4 denotes the --with-hdf4=no option for the compiler.
Fig. 5. The wall clock time to read 3-D variables contained within a MOD07 product data file in HDF using the readGDAL_HDF tool. The tool was built linking agianst the GDAL compiled under different operating systems, distribution package, compilers, and configuration. ubuntu and suse indicate Ubuntu and OpenSUSE operating systems, respectively. gcc and icc represent GNU and Inter compilers, respectively. Deb and rpm represent the GDAL package distributed by Ubuntu and OpenSUSE, respectively. nohdf4 denotes the --with-hdf4=no option for the compiler.
Table 1. The metadata of variables contained in the MOD07 product for measurement of the processing time using the GDAL
Table 2. The environment and configuration under which the GDAL was built or installed to process a remote sensing data file in HDF
References
- Almomany, A., A. Alquraan, and L. Balachandran, 2014: GCC vs. ICC comparison using PARSEC Benchmarks. International Journal of Innovative Technology and Exploring Engineering 4(7).
- Andrew, M. E., M. A. Wulder, and T. A. Nelson, 2014: Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography 38(3), 328-353. https://doi.org/10.1177/0309133314528942
- Ban, H.-Y., K. S. Kim, N.-W. Park, and B.-W. Lee, 2016: Using MODIS data to predict regional corn yields. Remote Sensing 9(1), 16pp. https://doi.org/10.3390/rs9010016
- Cohen, W. B., and S. N. Goward, 2004: Landsat's role in ecological applications of remote sensing. Bioscience 54(6), 535-545. https://doi.org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
- Busetto, L., and L. Ranghetti, 2016: MODIStsp : An R package for automatic preprocessing of MODIS Land Products time series. Computers & Geosciences 97, 40-48. https://doi.org/10.1016/j.cageo.2016.08.020
- Doraiswamy, P., J. Hatfield, T. Jackson, B. Akhmedov, J. Prueger, and A. Stern, 2004: Crop condition and yield simulations using Landsat and MODIS. Remote sensing of environment 92(4), 548-559. https://doi.org/10.1016/j.rse.2004.05.017
- Hong, S. Y., S.-I. Na, K.-D. Lee, Y.-S. Kim, and S.-C. Baek, 2015: A study on estimating rice yield in DPRK using MODIS NDVI and rainfall data. Korean Journal of Remote Sensing 31(5), 441-448. https://doi.org/10.7780/kjrs.2015.31.5.8
- Jobbagy, E. G., O. E. Sala, and J. M. Paruelo, 2002: Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83(2), 307-319. https://doi.org/10.1890/0012-9658(2002)083[0307:PACOPP]2.0.CO;2
- Lee, K.-D., S.-I. Na, S.-Y. Hong, C.-W. Park, K.-H. So, and J.-M. Park, 2017: Estimating corn and soybean yield using MODIS NDVI and meteorological data in Illinois and Iowa, USA. Korean Journal of Remote Sensing 33(5), 741-750. https://doi.org/10.7780/kjrs.2017.33.5.2.13
- Lee, J.-H., S.-K. Kang, K.-C. Jang, J.-H. Ko, and S.-Y. Hong, 2011: The evaluation of meteorological inputs retrieved from MODIS for estimation of gross primary productivity in the US corn belt region. Korean Journal of Remote Sensing 27(4), 481-494. https://doi.org/10.7780/kjrs.2011.27.4.481
- Li, J., M. Humphrey, C. Van Ingen, D. Agarwal, K. Jackson, and Y. Ryu, 2010: escience in the cloud: A modis satellite data reprojection and reduction pipeline in the windows azure platform. In 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), IEEE, 1-10.
- Lobell, D. B., G. P. Asner, J. I. Ortiz-Monasterio, and T. L. Benning, 2003: Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture, Ecosystems & Environment 94(2), 205-220. https://doi.org/10.1016/S0167-8809(02)00021-X
- Mourani, G.,2001: Securing and Optimizing Linux: The Ultimate Solution. Open Network Architecture, Inc., 855pp.
- Prasad, A. K., L. Chai, R. P. Singh, and M. Kafatos, 2006: Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation 8(1), 26-33. https://doi.org/10.1016/j.jag.2005.06.002
- Tie, B., F. Huang, J. Tao, J. Lu, and D. Qiu, 2018: A parallel and optimization approach for Land-Surface Temperature retrieval on a Windows-Based PC cluster. Sustainability 10(3), 621pp. https://doi.org/10.3390/su10030621
- Tristram, W., and K. Bradshaw, 2012: Performance optimisation of sequential programs on multi-core processors. Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, Pretoria, South Africa, ACM, 119-128.
- Turner, D. P., W. D. Ritts, W. B. Cohen, S. T. Gower, S. W. Running, M. Zhao, M. H. Costa, A. A. Kirschbaum, J. M. Ham, S. R. Saleska, and D. E. Ahl, 2006: Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sensing of Environment 102(3-4), 282-292. https://doi.org/10.1016/j.rse.2006.02.017
- Vancutsem, C., P. Ceccato, T. Dinku, and S. J. Connor, 2010: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment 114(2), 449-465. https://doi.org/10.1016/j.rse.2009.10.002
- Yoo, B. H., and K. S. Kim, 2017: Development of a gridded climate data tool for the COordinated Regional climate Downscaling EXperiment data. Computers and Electronics in Agriculture 133, 128-140. https://doi.org/10.1016/j.compag.2016.12.001