DOI QR코드

DOI QR Code

망천아 화산 고철질 암석의 반정광물 조성 연구

Phenocryst Composition of Mafic Volcanic Rocks in the Wangtian'e Volcano

  • 윤성효 (부산대학교 지구과학교육과)
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University)
  • 투고 : 2019.02.15
  • 심사 : 2019.03.19
  • 발행 : 2019.03.31

초록

백두산화산지대 남부 망천아 화산의 15도구는 주상절리가 발달하여 우수한 경관을 나타낸다. 이 지역의 고철질 암석에 함유되어 있는 반상조직을 나타내는 반정광물의 조성에 대한 연구를 수행하였다. 망천아 화산을 이루는 암석은 하위로부터 장백기의 현무암과 조면현무암을 기저로 하여, 망천아기의 현무암질조면안산암과 그 상부의 조면암과 알칼리유문암으로 구성된다. 본 연구에서는 고철질 암석인 조면현무암과 현무암 질조면안산암을 대상으로 연구를 수행하였다. 반정광물은 장석, 휘석, 감람석이며, EPMA분석을 실시하여 주성분 조성을 파악하였다. 망천아기 현무암질조면안산암에 포함된 사장석 반정들은 안데신과 올리고클레이스의 경계부($An_{24.1{\sim}36.0}$)에 걸쳐 도시되며, 장백기 조면현무암에 포함된 사장석 반정들은 대부분이 라브라도라이트($An_{54.2{\sim}65.2}$) 영역에 도시된다. 휘석 반정들은 보통휘석의 영역에 도시된다. 장백기 조면현무암에서 산출되는 감람석 반정은 크리솔라이트($Mg_{0.79-0.77}Fe_{0.21-0.23}$)를 나타내며, 기질부에서 미반정으로 산출되는 감람석은 하이알로시더라이트($Mg_{0.58-0.56}Fe_{0.42-0.44}$) 조성을 나타낸다. 반정의 정출온도 범위는 감람석 $1196{\sim}1123^{\circ}C$, 단사휘석 $1122{\sim}1112^{\circ}C$, 그리고 사장석 반정과 래쓰는 각각 $1118{\sim}1107^{\circ}C$, $1091{\sim}1089^{\circ}C$로 계산되었다. 정출온도 계산결과는 동일 마그마방 내에서 감람석 반정, 단사휘석, 사장석 반정, 래쓰가 순차적으로 정출되었음을 제시한다.

There are beautiful scenery with columnar jointing at 15 valley of southern slope of the Wangtian'e volcano in Mt. Baekdu volcanic field. The compositions of phenocryst minerals which have porphyritic textures in mafic volcanic rocks of this area were carried out. The Wangtian'e volcano consists of Changbai basalt~trachybasalt (lower part) and Wangtian'e basaltic trachyandesite~trachyte~alkali rhyolite (upper part). This study is focused on the mafic rocks of the Changbai trachybsalt and the Wangtian'e basaltic trachyandesite. Main phenocrysts are feldspar, pyroxene and olivine. The major element compositions of the phenocrysts were analyzed using EPMA. Plagioclase phenocrysts of the Wangtian'e basaltic trachyandesite are located at the border of andesine and oligoclase ($An_{24.1{\sim}36.0}$) in the An-Ab-Or diagram, and those of the Changbai trachybasalt are labradorite ($An_{54.2{\sim}65.2}$). Pyroxene phenocrysts are augite. Olivine phenocrysts of the Changbai trachybsalt are crysolite ($Mg_{0.79-0.77}Fe_{0.21-0.23}$) and microphenocrysts in the groundmass are hyalosiderite ($Mg_{0.58-0.56}Fe_{0.42-0.44}$). Calculated crystallization temperature of olivine phenocrysts is $1196{\sim}1123^{\circ}C$, clinopyroxene is $1122{\sim}1112^{\circ}C$, phenocrysts and laths of plagioclases are $1118{\sim}1107^{\circ}C$ and $1091{\sim}1089^{\circ}C$, respectively. The temperatures suggests that the olivine phenocrysts, clinopyroxene, plagioclase phenocrysts, and plagioclase laths were crystallized in the magma chamber in sequence.

키워드

HGOSBQ_2019_v28n1_15_f0001.png 이미지

Fig. 1. Geologic map of the Mt. Baekdu volcanic field (Modified after Lee, 1991).

HGOSBQ_2019_v28n1_15_f0002.png 이미지

Fig. 2. Photograph of the outcrop showing columnar jointing (upper) and porphyritic texture with phenocrysts of plagioclase (lower right; basaltic trachyandesite(B-1), lower left; trachybasalt(B-2)).

HGOSBQ_2019_v28n1_15_f0003.png 이미지

Fig. 3. Photomicrograph showing porphyritic texture with phenocrysts of plagioclase in the cryptocrystalline (upper; B-1) and intersertal (lower; B-2) groundmass. Width of photo is about 6 mm. Crossed nicols. Pl; plagioclase, Px; pyroxene.

HGOSBQ_2019_v28n1_15_f0004.png 이미지

Fig. 5. Pyroxene compositions for Changbai trachybasalt (B-2) and Wangtian'e basaltic trachyandesite (B-1) in the system of CaSiO3-MgSiO3-FeSiO3 (Morimoto, 1988).

HGOSBQ_2019_v28n1_15_f0005.png 이미지

Fig. 6. Olivine compositions for Changbai trachybasalt (B-2)(Deer et al., 1972).

HGOSBQ_2019_v28n1_15_f0006.png 이미지

Fig. 4. An-Ab-Or diagram showing feldspar compositions for Changbai trachybasalt (B-2) and Wangtian’e basaltic trachyandesite (B-1) (Deer et al., 1972).

Table 1. Representative major element analysis (wt%) of feldspars and pyroxene of Wangtien’e basaltic trachyandesite

HGOSBQ_2019_v28n1_15_t0002.png 이미지

Table 2. Representative major element analysis (wt%) of feldspars, pyroxene and olivine of the Changbai trachybasalt.

HGOSBQ_2019_v28n1_15_t0003.png 이미지

Table 3. Calculated crystallization temperature of olivine, clinopyroxene, and plagioclase of Changbai trachybasalt (B-2) and Wangtian’e basaltic trachyandesite (B-1).

HGOSBQ_2019_v28n1_15_t0004.png 이미지

참고문헌

  1. China Earthquake Administration, 1995, The catalogue of Chinese historical strong earthquakes(23th century BC-1911 AD). Department of Earthquake Disaster Prevention, National Earthquake Administration, Beijing, Seismological Press. (in Chinese)
  2. Deer, W.A., Howie, R.A. and Zussman, J., 1972, Rock forming minerals, Vol. 1, ortho- and ring silicates. Longmans Group Ltd., London, England, 77-112.
  3. Fan, Q.C., Liu, R.X., Zhang, G.H. and Sui, J.L., 1998a, The genesis and evolution of bimodal volcanic rocks in Wangtian′e volcano, Changbaishan. Acta Petrologica Sinica, 14(3), 305-317.(in Chinese with English abstract)
  4. Fan, Q.C., Liu, R.X., Li, D.M. and Li Q., 1998b, Significance of K-Ar age of bimodal volcanic rocks at Wangtian'e volcano, Changbaishan area. Chinese Sciences Bulletin, 43(20), 2222-2225. (in Chinese) https://doi.org/10.1360/csb1998-43-20-2222
  5. Kang, T.S., Baag, C.-E., Choo, K.S. and Shin, J.S., 2010, Characteristics of the volcanic earthquake at Mt. Baekdu in 1597. Abstract of 2010 Fall Geoscience Joint Conference. 80.
  6. Langmuir, C.H. and Hanson, G.N., 1981, Calculating mineral-melt equilibria with stoichiometry, mass balance, and single-component distribution coefficients, in Thermodynamics of Minerals and Melts, Advances in Physical Geochemistry, Vol. 1, edited by R. C. Newton, A. Navrotsky, and B. J. Wood, Springer Verlag, New York. 247-271.
  7. Lee, D., 1991, The eruption stratigraphy and volcanism in the Mt. Baekdu area. '91 International Science and Technology Meeting (Abstract), The Korean-Chinese Scientific Association, 21.
  8. Morimoto, N., 1988, Nomenclature of pyroxenes. American Mineralogist, 73, 1123-1133.
  9. Putirka, K.D., Mikaelian, H., Ryerson, F. and Shaw, H.F., 2003, New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554. https://doi.org/10.2138/am-2003-1017
  10. Putirka, K.D., 2008, Thermometers and barometers for volcanic systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, inclusions and volcanic processes, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 69, 61-120.
  11. Putirka, K.D., 2005a, Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts : Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6, Q05L08, doi: 10.1029/2005GC000915.
  12. Putirka, K.D., 2005b, Igneous thermometers and barometers based on plagioclase+liquid equilibria : Tests of some existing models and new calibrations. American Mineralogist, 90, 336-346. https://doi.org/10.2138/am.2005.1449
  13. Xu, W.J. and Gao, M.T., 2014, Statistical analysis of the completeness of earthquake catalogs in China mainland. Chinese Journal of Geophysics, 57(9), 2802-2812.
  14. Yun, S.H., Won, C.K. and Lee, M.W., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paektu area. Journal of Geological Society of Korea, 29, 291-307.
  15. Yun, S.H., 2013, Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano. Journal of the Korean Earth Science Society, 34(6), 456-469. https://doi.org/10.5467/JKESS.2013.34.6.456