Fig. 1. Pre-treatment of specimens
Fig. 2. Set-up for NT build 492 test
Fig. 3. Arrangement of migration test set-up
Fig. 4. Test set-up for rapid chloride penetration test
Fig. 5. Chloride diffusion coefficient
Fig. 6. Relative ratio of chloride diffusion coefficient with respect toaverage value
Fig. 7. RCPT test result
Table 1. Chemical composition of the source material(% by mass)
Table 2. Mixture proportions of tested mortar
Table 3. Test conditions for chloride migration test
Table 4. Test conditions for chloride migration test
Table 5. Measured chloride diffusion coefficients
Table 6. Test conditions for chloride migration test
References
- ASTM. (2010). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM C 1202-10, ASTM International.
- Bae, S.H., Park, J.I., Lee, K.M., Choi, S. (2009). Influence of mineral admixtures on the diffusion coefficient for chloride Ion in concrete, Journal of the Korean Society of Civil Engineers, 29(4A), 347-353 [in Korean].
- Collins, F.G., Sanjayan, J.G. (1999). Workability and mechanical properties of alkali activated slag concrete, Cement and Concrete Research, 29, 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
- Hong, K.N., Park, J.K., Jung, K.S., Han, S.H., Kim, J.H. (2015). Durability of alkali-activated blast furnace slag concrete : chloride ions diffusion, Journal of the Korean Society of Safety, 30(4), 120-127 [in Korean]. https://doi.org/10.14346/JKOSOS.2015.30.4.120
- Lee, H.J., Lee, S.J., Bae, S.H., Kwon, S.O., Lee, K.M., Jung, S.H. (2016). Long-term durability estimation of cementless concrete based on alkali activated slag, Journal of the Korean Recycled Construction Resources, 4(2), 149-156 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.2.149
- Kim, K.W., Kim, B.J., Yang, K.H., Song, J.K. (2012). Strength development of blended sodium alkali-activated ground granulated blast-furnace slag(GGBS) mortar, Journal of the Korea Concrete Institute, 24(2), 137-145. https://doi.org/10.4334/JKCI.2012.24.2.137
- Kim, S.S., Lee, J.B., Lee, C.M., Lee, J.H., Eom, S.H. (2013). "Study on the sulfate resistance of concrete using mineral admixture," Proceedings of the Korea Concrete Institute, 25(1), 99-100 [in Korean]. https://doi.org/10.4334/JKCI.2013.25.1.099
- Korean Standards Association. (2012). Testing Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration [KS F 2711], Korean Standards Association.
- Nordtest. (1999). Concrete, Mortar and Cement Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. NT BUILD 492, Nordtest.
- Song, J.K., Yang, K.H., Kim, G.W., Kim, B.J. (2010). Properties of sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortars, Journal of Architectural Institute of Korea, 26(6), 61-68.
- Song, K.I., Shin, G.S., Gong, M.H., Song, J.K. (2013). Basic research of self compacting concrete using alkali-activated slag binder, Journal of the Korea Concrete Institute, 25(6), 657-665. https://doi.org/10.4334/JKCI.2013.25.6.657
- Thomas, R.J., Ariyachandra, E., Lezama, D., Peethamparan, S. (2018). Comparison of chloride permeability methods of Alkali-Activated concrete, Construction and Building Materials, 165, 104-111. https://doi.org/10.1016/j.conbuildmat.2018.01.016
- Park, J.W., Ann, K.Y., Cho, C.G. (2015). Resistance of alkali-activated slag concrete to chloride-induced corrosion, Advances in Materials Science and Engineering, 2015(273101), 7.
- Wu, Z., Wong, H.S., Buenfeld, N.R. (2017). Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking, Cement and Concrete Research, 98, 136-154. https://doi.org/10.1016/j.cemconres.2017.04.006
- Yang, K.H., Oh, S.J., Song, J.K. (2008). Mechanical properties of alkali-activated slag-based concrete using lightweight aggregates, Journal of the Korea Concrete Institute, 20(3), 405-412 [in Korean]. https://doi.org/10.4334/JKCI.2008.20.3.405
- Yang, K.H., Sim, J.I., Lee, S., Hwang, H.J. (2009). Workability, compressive strength and fire resistance characteristics of cementless alkali-activated lightweight mortars, Journal of Architectural Institute of Korea, 25(8), 151-158 [in Korean].