DOI QR코드

DOI QR Code

Validation of Test Methods for Chloride Penetration Durability of Alkali Activated Slag

알칼리 활성 슬래그의 염해 내구성 평가 시험 방법 유효성

  • Lim, Min-Hyuk (Department of Civil Engineering, Chungnam National University) ;
  • Lee, Do-Keun (Department of Civil Engineering, Chungnam National University) ;
  • Shin, Kyung-Joon (Department of Civil Engineering, Chungnam National University) ;
  • Song, Keum-Il (Department of Architectural Engineering, Chonnam National University) ;
  • Song, Jin-Kyu (Department of Architectural Engineering, Chonnam National University)
  • Received : 2018.11.06
  • Accepted : 2019.02.21
  • Published : 2019.03.30

Abstract

Recently, studies on alkali activated slag(AAS) binders that do not use cement have been actively conducted. It is known that AAS concrete is highly resistant to chloride damage based on the test method used for ordinary concrete. However, it is fully not understood whether the test method used for concrete can be applied to AAS mixtures. Therefore, in this study, we verified the consistency of NT Build 492 and ASTM C 1202 test methods by applying various experimental variables. According to the experimental results, the two tests yielded opposite results. Therefore, the chloride durability of AAS mortar can be different depending on the evaluation method.

최근 시멘트를 사용하지 않는 알칼리 활성 슬래그(AAS) 결합재에 대한 연구가 활발히 이루어지고 있다. AAS 콘크리트는 염해 저항성은 주로 기존의 콘크리트에 대한 실험법을 차용하여 평가하고 있으며, 염해에 대한 저항성이 매우 높은 것으로 알려져 있다. 그러나 콘크리트에 적용하던 시험 방법을 AAS 배합에 유효하게 적용하고 있는지에 대한 검증은 정확하게 알려져 있지 않다. 따라서 본 연구에서는 다양한 실험 변수를 적용하여 NT Build 492와 ASTM C 1202 시험 방법에 대한 일관성을 검증하였다. 실험결과에 따르면 두 시험 방법은 상반된 결과를 도출하고 있었다. 따라서 AAS 모르타르의 염해 내구성은 평가 방법에 따라 다른 경향을 나타낼 수도 있을 것이다.

Keywords

GSJHDK_2019_v7n1_1_f0001.png 이미지

Fig. 1. Pre-treatment of specimens

GSJHDK_2019_v7n1_1_f0002.png 이미지

Fig. 2. Set-up for NT build 492 test

GSJHDK_2019_v7n1_1_f0003.png 이미지

Fig. 3. Arrangement of migration test set-up

GSJHDK_2019_v7n1_1_f0004.png 이미지

Fig. 4. Test set-up for rapid chloride penetration test

GSJHDK_2019_v7n1_1_f0005.png 이미지

Fig. 5. Chloride diffusion coefficient

GSJHDK_2019_v7n1_1_f0006.png 이미지

Fig. 6. Relative ratio of chloride diffusion coefficient with respect toaverage value

GSJHDK_2019_v7n1_1_f0007.png 이미지

Fig. 7. RCPT test result

Table 1. Chemical composition of the source material(% by mass)

GSJHDK_2019_v7n1_1_t0001.png 이미지

Table 2. Mixture proportions of tested mortar

GSJHDK_2019_v7n1_1_t0002.png 이미지

Table 3. Test conditions for chloride migration test

GSJHDK_2019_v7n1_1_t0003.png 이미지

Table 4. Test conditions for chloride migration test

GSJHDK_2019_v7n1_1_t0004.png 이미지

Table 5. Measured chloride diffusion coefficients

GSJHDK_2019_v7n1_1_t0005.png 이미지

Table 6. Test conditions for chloride migration test

GSJHDK_2019_v7n1_1_t0006.png 이미지

References

  1. ASTM. (2010). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM C 1202-10, ASTM International.
  2. Bae, S.H., Park, J.I., Lee, K.M., Choi, S. (2009). Influence of mineral admixtures on the diffusion coefficient for chloride Ion in concrete, Journal of the Korean Society of Civil Engineers, 29(4A), 347-353 [in Korean].
  3. Collins, F.G., Sanjayan, J.G. (1999). Workability and mechanical properties of alkali activated slag concrete, Cement and Concrete Research, 29, 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
  4. Hong, K.N., Park, J.K., Jung, K.S., Han, S.H., Kim, J.H. (2015). Durability of alkali-activated blast furnace slag concrete : chloride ions diffusion, Journal of the Korean Society of Safety, 30(4), 120-127 [in Korean]. https://doi.org/10.14346/JKOSOS.2015.30.4.120
  5. Lee, H.J., Lee, S.J., Bae, S.H., Kwon, S.O., Lee, K.M., Jung, S.H. (2016). Long-term durability estimation of cementless concrete based on alkali activated slag, Journal of the Korean Recycled Construction Resources, 4(2), 149-156 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.2.149
  6. Kim, K.W., Kim, B.J., Yang, K.H., Song, J.K. (2012). Strength development of blended sodium alkali-activated ground granulated blast-furnace slag(GGBS) mortar, Journal of the Korea Concrete Institute, 24(2), 137-145. https://doi.org/10.4334/JKCI.2012.24.2.137
  7. Kim, S.S., Lee, J.B., Lee, C.M., Lee, J.H., Eom, S.H. (2013). "Study on the sulfate resistance of concrete using mineral admixture," Proceedings of the Korea Concrete Institute, 25(1), 99-100 [in Korean]. https://doi.org/10.4334/JKCI.2013.25.1.099
  8. Korean Standards Association. (2012). Testing Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration [KS F 2711], Korean Standards Association.
  9. Nordtest. (1999). Concrete, Mortar and Cement Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. NT BUILD 492, Nordtest.
  10. Song, J.K., Yang, K.H., Kim, G.W., Kim, B.J. (2010). Properties of sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortars, Journal of Architectural Institute of Korea, 26(6), 61-68.
  11. Song, K.I., Shin, G.S., Gong, M.H., Song, J.K. (2013). Basic research of self compacting concrete using alkali-activated slag binder, Journal of the Korea Concrete Institute, 25(6), 657-665. https://doi.org/10.4334/JKCI.2013.25.6.657
  12. Thomas, R.J., Ariyachandra, E., Lezama, D., Peethamparan, S. (2018). Comparison of chloride permeability methods of Alkali-Activated concrete, Construction and Building Materials, 165, 104-111. https://doi.org/10.1016/j.conbuildmat.2018.01.016
  13. Park, J.W., Ann, K.Y., Cho, C.G. (2015). Resistance of alkali-activated slag concrete to chloride-induced corrosion, Advances in Materials Science and Engineering, 2015(273101), 7.
  14. Wu, Z., Wong, H.S., Buenfeld, N.R. (2017). Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking, Cement and Concrete Research, 98, 136-154. https://doi.org/10.1016/j.cemconres.2017.04.006
  15. Yang, K.H., Oh, S.J., Song, J.K. (2008). Mechanical properties of alkali-activated slag-based concrete using lightweight aggregates, Journal of the Korea Concrete Institute, 20(3), 405-412 [in Korean]. https://doi.org/10.4334/JKCI.2008.20.3.405
  16. Yang, K.H., Sim, J.I., Lee, S., Hwang, H.J. (2009). Workability, compressive strength and fire resistance characteristics of cementless alkali-activated lightweight mortars, Journal of Architectural Institute of Korea, 25(8), 151-158 [in Korean].