DOI QR코드

DOI QR Code

A Study on Reaction of Metachromasy by means of Polyphenol Derivatives and Hematoxylin-Eosin in Vesicle of Dipalmitoyl Phosphatidyl Choline

Dipalmitoyl Phosphatidyl Choline의 Vesicle에서 Polyphenol Derivatives와 Hematoxylin-Eosin Stain에 의한 Metachromasy 반응에 관한 연구

  • Kim, Ki-Jun (Dept. of Chemical Engineering, Dae-Jin University) ;
  • Sung, Wanmo (Dept. of Chemical Engineering, Dae-Jin University) ;
  • Kim, Joohan (Dept. of Chemical Engineering, Dae-Jin University) ;
  • Yoon, Sunghyun (Dept. of Chemical Engineering, Dae-Jin University)
  • 김기준 (대진대학교 공과대학 화학공학과) ;
  • 성완모 (대진대학교 공과대학 화학공학과) ;
  • 김주한 (대진대학교 공과대학 화학공학과) ;
  • 윤성현 (대진대학교 공과대학 화학공학과)
  • Received : 2019.01.25
  • Accepted : 2019.03.19
  • Published : 2019.03.31

Abstract

Dipalmitoyl phosphatidyl choline(DPPC), Polyphenol Derivatives, and Hematoxylin-Eosin were directly sonicated in acidic condition for 6 minutes to give clear stock solutions. Absorbtion properties of Polyphenol Derivatives in lecithin vesicle of Diphalmitoyl phosphatidyl choline system at $25^{\circ}C$ have been studied by absorbtion spectroscopy. The equilibrium of Polyphenol Derivatives between monomer and dimer in lecithin vesicles have been existed at low concentration of Polyphenol Derivatives, but oligomer has been formed in vesicle at high concentration of lecithin vesicles. By adding Bacteriorhodopsin(BR) to constant concentration of Polyphenol Derivatives decreased the absorbtion ratio(${\alpha}/{\beta}$) of Polyphenol Derivatives was increased during phase transition of dipalmitoyl phosphatidyl choline. In the presence of column eluted lamella vesicle and mixture of uni- and multilamella aggregates. The differences of rate between column eluted- and mixture were observed, therefore column eluted lamella reaction was represented more catalytic effect. The phase transition temperature of hydrolysis on Dipalmitoyl phosphatidyl choline and Polyphenol Derivatives were measured higher than it of Dipalmitoyl phosphatidyl choline and no Polyphenol Derivatives.

Dipalmitoyl phosphatidyl choline(DPPC), Polyphenol 유도체, 그리고 Hematoxylin-Eosin은 5분 동안 산성 상태에서 직접 초음파 처리하여 명확한 표준용액을 제공했다. $25^{\circ}C$에서 DPPC 계의 레시틴소포에서 폴리페놀유도체의 흡수특성은 흡수분광학에 의해 분석하였다. 레시틴소포에서 단량체와 이량체 사이의 폴리페놀유도체의 평형은 폴리페놀유도체의 저농도에서 존재했지만 올리고머는 레시틴소포의 고농도에서 소포안에 형성되었다. 폴리페놀유도체의 일정한 농도에 Bacteriorhodopsin(BR)을 첨가함으로써 DPPC의 상전이동안 폴리페놀유도체의 흡수비율(${\alpha}/{\beta}$)이 감소되었다. 기둥이 있는 곳에 라멜라 소포와 uni- and multilamella 응집체의 혼합물이 존재한다. 용출된 기둥과 혼합물사이의 속도 차이가 관찰되었으므로 기둥 용출된 라멜라반응 보다 촉매 효과를 나타냈다. DPPC 및 폴리페놀유도체에 대한 가수분해의 상전이 온도는 DPPC 및 폴리페놀유도체 보다 높게 측정되었다.

Keywords

HGOHBI_2019_v36n1_348_f0001.png 이미지

Fig. 1. Absorbtion spectra of DPPC and BR at pH = 7.2.

HGOHBI_2019_v36n1_348_f0002.png 이미지

Fig. 2. Time dependence absorbtion spectra during the DPPC - BR incorporated with Polyphenol Derivatives(PPD) and Hematoxylin-Eosin(H-E)

HGOHBI_2019_v36n1_348_f0003.png 이미지

Fig. 3. Spectra Change of Absorbance by means of wavelength; ■; PPD-DPPC, ▲; H-E-DPPC catalyzed hydrolysis of Polyphenol Derivatives at 25 ℃, pH 9.0.

HGOHBI_2019_v36n1_348_f0004.png 이미지

Fig. 4. Absorbance spectra of PPD, H-E, DPPC, BR in solution at 25℃, pH= 7.02, 1) DPPC, 2) BR, 3) H-E, 4) PPD, 5)H-E-DPPC, 6)PPD-DPPC.

Table 1. The observed absorbance for the PPD-DPPC and H-E-DPPC catalyzed hydrolysis of Polyphenol Derivatives at 25 ℃, pH 9.0

HGOHBI_2019_v36n1_348_t0001.png 이미지

References

  1. I. F. Uchegbu, "Synthetic Surfactant Vesicles", CRC Press Inc: N. Y (2000).
  2. P. T. T. Wong and H. H. Mantsch, J. Chem. Phys., Vol. 83, No. 7, pp. 268-3273, (1985).
  3. B. K. Burnett and R. J. Robson, Biochimica et Biophysica Acta, Vol. 815, pp. 57-67 (1985). https://doi.org/10.1016/0005-2736(85)90474-2
  4. P. Vanderwerf and E. F. Ullman, Biochimica et Biophysica Acta, Vol. 596, pp. 302-314(1985). https://doi.org/10.1016/0005-2736(80)90363-6
  5. Zana and Raoul, "Dynamics of Surfactant Self-Assemblies", Marcel Dekker Inc., pp. 21-31 (2005).
  6. T. Sano, J. Tanka and Y. Toyoshima, J. Phy. Chem., Vol. 86, pp. 3013-3016, (1982). https://doi.org/10.1021/j100212a040
  7. K. Kanto and A. Romero, J. Am. Chem. Soc., Vol. 101, No. 15, pp. 4030-4037, (1979). https://doi.org/10.1021/ja00509a002
  8. Y. Okahata, R. Ando and T.Kunitake, Ber. Bunsenges, Phy. Chem., Vol. 85, pp. 789-798, (1981). https://doi.org/10.1002/bbpc.19810850811
  9. T. Kunitake, N. Kunitake and N. Nakashima, J. Am. Chem. Soc., Vol. 106, pp. 1977-1983, (1984).
  10. Terrance G. Cooper, "The Tools of Biochemistry", John Wiley & Sons Inc. N. Y. (1975).
  11. M. Iolanda and M. V. Regina, Tetrahedron Letters, Vol. 33, pp. 3065-3068, (1975). https://doi.org/10.1016/S0040-4039(00)79601-8
  12. Y. Okahata and T. Kunitake, Bull. Chem. Soc. Jpn", Vol. 52, pp. 3647-3653, (1979). https://doi.org/10.1246/bcsj.52.3647
  13. G. Gregoriadis, " Liposome Technology", CRC Press Inc. : N.Y, (1984).
  14. M. D. Houslay and K. K. Stanley, "Dynamics of Biological Membrane", John Wiley & Sons Inc. : N. Y. (1982).
  15. E. A. Dennis, J. Cao, Y. H. Hsu, V. Magrioti, G. Kokotos, 'Phospholipase A2 enzymes: physical structure', biological function, disease implication, chemical inhibition, and therapeutic intervention, Chemical Reviews. Vol. 111, pp. 6131, (2011).