DOI QR코드

DOI QR Code

A Study on Estimation of End Bearing Capacity of a PHC-W Pile in Building Underground Additional Wall Using the PHC-W Earth Retaining Wall

PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝의 선단지지력 산정에 관한 연구

  • Received : 2018.11.28
  • Accepted : 2019.01.09
  • Published : 2019.03.31

Abstract

With the recent concentration of urban populations, the constructions of large structures are increasing, along with the development of foundations for large structures. PHC Piles have been used in many structures ever since Japanese introduced the technology at the end of the 20th century. Recently, many studies on the use of the PHC Pile have been carried out as earth retaining using the merits of PHC piles. In this study, static axial compression tests were conducted on the PHC-W piles constructed as column-type in building underground additional wall using the PHC-W earth retaining wall. The end bearing capacity of pile was calculated using the axial load transfer measurement that was obtained from the static axial compression test result. Since end bearing capacity of the PHC-W pile embedded in weathered rock showed a different behaviour from the conventional PHC pile, the calculation method of end bearing capacity for column-type PHC-W piles would be proposed. The unit ultimate end bearing equation proposed for single and group PHC-W pile embedded in weathered rock is $q_b=13.3N_b$ and $q_b=6.8N_b$.

최근 도시 인구의 밀집으로 대형구조물의 건설이 증가하고 있으며 이와 더불어 대형구조물의 기초도 발전하고 있다. 2000년대 말에 일본의 기술을 도입하여 PHC말뚝은 많은 구조물에 사용되고 있다. 최근 PHC말뚝의 장점을 이용하여 흙막이 벽체로의 사용에 대한 연구가 많이 진행되고 있으며, 이 연구에서는 PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝을 주열식으로 시공하여 연직 압축정재하시험을 실시하였으며, 하중전이 측정을 통하여 PHC-W말뚝의 선단지지력을 산정하였다. 풍화암에 근입된 PHC-W말뚝의 지지력은 기존 PHC말뚝의 지지력과는 차이를 보였으므로, 주열식으로 시공된 PHC-W말뚝의 선단지지력 산정식을 제안하였다. 풍화암에 근입된 PHC-W말뚝의 단위극한선단지지력 산정식으로 주열식 군PHC-W말뚝과 단일PHC-W말뚝에서 각각 $q_b=6.8N_b$$q_b=13.3N_b$로 제안할 수 있었다.

Keywords

GJBGC4_2019_v35n3_5_f0001.png 이미지

Fig. 1. Improved section of PHC pile (Choi, 2014)

GJBGC4_2019_v35n3_5_f0002.png 이미지

Fig. 2. Construction method of SDA (Cho, 2007)

GJBGC4_2019_v35n3_5_f0003.png 이미지

Fig. 3. Construction step (Choi, 2014)

GJBGC4_2019_v35n3_5_f0004.png 이미지

Fig. 4. Outer wall of underground parking lot (Ryu, 2015)

GJBGC4_2019_v35n3_5_f0005.png 이미지

Fig. 5. The conceptual diagram of the additional wall

GJBGC4_2019_v35n3_5_f0006.png 이미지

Fig. 6. Borehole positions and soil profile

GJBGC4_2019_v35n3_5_f0008.png 이미지

Fig. 9. Load-displacement curve of group pile (TP-G)

GJBGC4_2019_v35n3_5_f0009.png 이미지

Fig. 10. Axial load distribution of group pile (TP-G)

GJBGC4_2019_v35n3_5_f0010.png 이미지

Fig. 11. Skin friction and end bearing of group pile (TP-G)

GJBGC4_2019_v35n3_5_f0011.png 이미지

Fig. 12. Load-displacement curve of single pile (TP-S)

GJBGC4_2019_v35n3_5_f0012.png 이미지

Fig. 13. Axial load distribution of single pile (TP-S)

GJBGC4_2019_v35n3_5_f0013.png 이미지

Fig. 14. Skin friction and end bearing of single pile (TP-S)

GJBGC4_2019_v35n3_5_f0014.png 이미지

Fig. 8. Details of sensor installation

GJBGC4_2019_v35n3_5_f0015.png 이미지

Fig. 7. Layout of test pile

Table 1. B.S.T results

GJBGC4_2019_v35n3_5_t0001.png 이미지

Table 2. P.M.T result

GJBGC4_2019_v35n3_5_t0002.png 이미지

Table 3. Results of static axial compressive load test

GJBGC4_2019_v35n3_5_t0003.png 이미지

Table 4. Results of axial load transfer test

GJBGC4_2019_v35n3_5_t0004.png 이미지

Table 5. Comparisons of unit end bearing values

GJBGC4_2019_v35n3_5_t0005.png 이미지

Table 6. Suggested formular by test values

GJBGC4_2019_v35n3_5_t0006.png 이미지

References

  1. ASTM (1994), "Standard Test Method for Piles Under Static Axial Compressive Load", American Society for Testing and Materials, ASTM D 1143-81.
  2. Choi, J. P. (2014), Study on the Economic Analysis of Retaining PHC-W Method Improved High Strength Pile, Pusan National Univ. Master's Thesis, pp. 6-25.
  3. Cho, C. H. (2007), "Injected Precast Pile Methof", ENGINEER BOOK, Seoul, pp.28-31.
  4. Davisson, M. T. (1972), "High Capacity Piles", Proceedings, Lecture Series, Innovations in Foundation Construction, ASCE, Illinois Section, Chicago, March 22, pp.81-112.
  5. Kim, J. S. (2003), "A Study on the Estimation of Bearing Capacity of SIP Pile embedded in Weathered-Granite Layer", Hanyang Univ. Doctor's Thesis.
  6. Lee, W. J. (2000), "Measurement of pile load transfer using fiberoptic sensor and characteristics of bored precast pile bearing capacity, Korea Univ. Doctor's Thesis.
  7. Ryu, S. H. (2015), Permanent Basement Wall Convergence Method Using a PHC Pile, Journal of the Korea Convergence Socity, Vol. 6, No.6, pp.163-169. https://doi.org/10.15207/JKCS.2015.6.6.163
  8. Terzaghi, K. and Peck, R. B. (1967), "Settlement of Point Foundation: Settlement of Floating Pile Foundation, Soil Mechanics in Engineering Practice, 2nd Edition, Hohn Wiley & Sons, New York.
  9. Woo, J. Y., Yoo, C. K., Kim, S. S., and Choi, Y. K. (2018), Analysis on the Bending and Shear Strength Testing for additional Walls Constructed by PHC-W Piles, Journal of the Korea Geotechnical Society, Vol.34, No.12, pp.7-17, ISSN 1229-2427. https://doi.org/10.7843/KGS.2018.34.12.7