DOI QR코드

DOI QR Code

객체 추적을 위한 특징점 검출기의 설계 및 구현

Design and Implementation of Feature Detector for Object Tracking

  • Lee, Du-hyeon (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Hyeon (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Cho, Jae-chan (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Jung, Yun-ho (School of Electronics and Information Engineering, Korea Aerospace University)
  • 투고 : 2019.03.10
  • 심사 : 2019.03.20
  • 발행 : 2019.03.31

초록

본 논문에서는 객체 추적을 위한 간소화된 특징점 검출 알고리즘을 제안하고, 이의 실시간 처리를 위한 하드웨어 구조 설계 및 구현 결과를 제시한다. 기존 Shi-Tomasi 알고리즘은 객체 추적 응용에서 우수한 성능을 보이지만, 연산 복잡도가 큰 문제가 존재한다. 따라서, 기존 알고리즘에 비해 연산 복잡도를 간소화시키면서 유사한 성능 지원이 가능한 효율적인 특징점 검출 알고리즘을 제안하고, 하드웨어 설계 및 구현 결과를 제시한다. 제안된 특징점 검출기는 FPGA 기반 구현 결과, 1,307개의 logic slices, 5개의 DSP 48s, 86.91Kbit의 메모리로 구현 가능함을 확인하였으며, 114MHz의 동작 주파수로 $1920{\times}1080FHD$급 영상에 대해 54fps의 실시간 처리가 가능하다.

In this paper, we propose a low-complexity feature detection algorithm for object tracking and present hardware architecture design and implementation results for real-time processing. The existing Shi-Tomasi algorithm shows good performance in object tracking applications, but has a high computational complexity. Therefore, we propose an efficient feature detection algorithm, which can reduce the operational complexity with the similar performance to Shi-Tomasi algorithm, and present its real-time implementation results. The proposed feature detector was implemented with 1,307 logic slices, 5 DSP 48s and 86.91Kbits memory with FPGA. In addition, it can support the real-time processing of 54fps at an operating frequency of 114MHz for $1920{\times}1080FHD$ images.

키워드

JGGJB@_2019_v23n1_207_f0001.png 이미지

Fig. 1. Example of feature candidate selection according to eigenvalue calculation. 그림 1. 고윳값 계산에 따른 특징점 후보 선정 예시

JGGJB@_2019_v23n1_207_f0002.png 이미지

Fig. 3. Example of feature tracking results. 그림 3. 특징점 추적 결과 예시

JGGJB@_2019_v23n1_207_f0003.png 이미지

Fig. 2. Feature detection examples: (a) Harris, (b) Shi-Tomasi, (c) Proposed algorithm. 그림 2. 특징점 검출 결과 예시 (a) Harris, (b) Shi-Tomasi, (c) 제안된 알고리즘

JGGJB@_2019_v23n1_207_f0004.png 이미지

Fig. 4. Block diagram for the proposed feature detector. 그림 4. 제안된 특징점 검출기의 블록도

JGGJB@_2019_v23n1_207_f0005.png 이미지

Fig. 5. Block diagram for the Gaussian filter. 그림 5. 가우시안 필터의 블록도

JGGJB@_2019_v23n1_207_f0006.png 이미지

Fig. 6. Example of line buffer data flow. 그림 6. 라인 버퍼의 데이터 플로우 예시

JGGJB@_2019_v23n1_207_f0007.png 이미지

Fig. 7. Block diagram for the region checking unit. 그림 7. 영역 체크 유닛의 블록도

Table 1. Implementation results of the proposed feature detector with Virtex-7 FPGA. 표 1. Virtex-7 FPGA 기반 특징점 검출기의 구현 결과

JGGJB@_2019_v23n1_207_t0001.png 이미지

Table 2. Processing-rate comparisons. 표 2. 처리 속도 비교

JGGJB@_2019_v23n1_207_t0002.png 이미지

참고문헌

  1. G. Velez, O. Otaegui, "Embedding vision-based advanced driver assistance systems: a survey," IET Intelligent Transport Systems, vol. 11, no. 3, pp. 103-112, 2017. DOI: 10.1049/iet-its.2016.0026
  2. A. Ferrick, J. Fish, E. Venator, G. S. Lee, "UAV Obstacle avoidance using image processing techniques," 2012 IEEE International Conference on Technologies for Practical Robot Applications, pp. 73-78, 2012. DOI: 10.1109/TePRA.2012.6215657
  3. J. Lee, "Implementation of pedestrian recognition based on HOG using ROI for real time processing," Journal of IKEEE, vol. 18, no. 4, pp. 581-585, 2014. DOI: 10.7471/ikeee.2014.18.4.581
  4. A. Smeulders, D. Chu et. al, "Visual tracking: an experimental survey," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1442-1468, 2014. https://doi.org/10.1109/TPAMI.2013.230
  5. S. Kim, H. Kim, and S. Ko, "A vehicle detection and tracking algorithm for supervision of illegal parking," Journal of IKEEE, vol. 13, no. 2, pp. 232-240, 2009. DOI: 10.1109/TPAMI.2013.230
  6. S. Smith and J. Bardy, "SUSAN-A new approach to low-level image processing," International Journal of Computer Vision, vol. 23, pp. 45-48, 1997. DOI: 10.1023/A:1007963824710
  7. D. G. Lowe, "Distinctive image features from scales-invariant key points," International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. DOI: 10.1023/B:VISI.0000029664.99615.94
  8. C. Harris and M. Stephens, "A combined corner and edge detector," Proceedings of the fourth alvey vision conference, pp. 147-151, 1988. DOI: 10.1.1.231.1604
  9. W. Jang, S. O and G. Kim, "A hardware implementation of pyramidal KLT feature tracker for driving assistance systems," IEEE Conference on Intelligent Transportation Systems, pp. 220-225, 2009. DOI: 10.1109/ITSC.2009.5309680
  10. T. Cho and K. Wong, "An efficient FPGA implementation of the Harris corner feature detector," 2015 IAPR International Conference of Machine Vision Application, 2015. DOI: 10.1109/MVA.2015.7153140
  11. J. Shi and C. Tomasi, "Good features to track," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1994. DOI: 10.1109/CVPR.1994.323794
  12. http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html
  13. T. Dinh et. al, "High throughput FPGA architecture for corner detection in traffic images," 2014 IEEE Fifth ICCE, pp. 297-302, 2014. DOI: 10.1109/CCE.2014.6916718
  14. F. Brenot, P. Fillatreau and J. Piat, "FPGA based accelerator for visual features detection," 2015 IEEE International Workshop of CMSM, 2015. DOI: 10.1109/ECMSM.2015.7208697
  15. A. Aguilar-Gonzalez, M. Arias-Estrada and F. Berry, "Robust feature extraction algorithm suitable for real-time embedded applications," Journal of Real-Time Image Processing, vol. 14, no. 3, pp. 647-665, 2018. DOI: 10.1007/s11554-017-0701-8