DOI QR코드

DOI QR Code

Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel

  • Rahman, Gauhar (Department of Mathematics, International Islamic University) ;
  • Nisar, Kottakkaran Sooppy (Department of Mathematics, College of Arts and Science-Wadi Al dawser, 11991, Prince Sattam bin Abdulaziz University) ;
  • Choi, Junesang (Department of Mathematics, Dongguk University) ;
  • Mubeen, Shahid (Department of Mathematics, University of Sargodha) ;
  • Arshad, Muhammad (Department of Mathematics, International Islamic University)
  • Received : 2017.01.23
  • Accepted : 2017.09.29
  • Published : 2019.03.23

Abstract

Since the Mittag-Leffler function was introduced in 1903, a variety of extensions and generalizations with diverse applications have been presented and investigated. In this paper, we aim to introduce some presumably new and remarkably different extensions of the Mittag-Leffler function, and use these to present the pathway fractional integral formulas. We point out relevant connections of some particular cases of our main results with known results.

Keywords

References

  1. P. Agarwal and J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc., 53(1)(2016), 181-193. https://doi.org/10.4134/BKMS.2016.53.1.181
  2. D. Baleanu and P. Agarwal, A composition formula of the pathway integral transform operator, Note Mat., 34(2014), 145-155.
  3. D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus. Models and numerical methods, Series on Complexity, Nonlinearity and Chaos 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
  4. M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  5. J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30(7)(2016), 1931-1939. https://doi.org/10.2298/FIL1607931C
  6. J. Choi and P. Agarwal, Certain inequalities involving pathway fractional integral operators, Kyungpook Math. J., 56(2016), 1161-1168. https://doi.org/10.5666/KMJ.2016.56.4.1161
  7. M. M. Dzrbasjan, Integral transforms and representations of functions in the complex domain, Nauka, Moscow, (in Russian), 1966.
  8. R. Gorenflo, A. A. Kilbas and S. V. Rogosin, On the generalized Mittag-Leffler type functions, Integral Transforms Spec. Funct., 7(1998), 215-224. https://doi.org/10.1080/10652469808819200
  9. R. Gorenflo, Y. Luchko and F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118(2000), 175-191. https://doi.org/10.1016/S0377-0427(00)00288-0
  10. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics(Udine, 1996), 223-276, CISM Courses and Lect., 378, Springer, Vienna, 1997.
  11. R. Gorenflo, F. Mainardi and H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), 195-202, VSP, Utrecht, 1998.
  12. R. Hilfer and H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct., 17(2006), 637-652. https://doi.org/10.1080/10652460600725341
  13. A. A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms Spec. Funct., 4(1996), 355-370. https://doi.org/10.1080/10652469608819121
  14. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
  15. F. Mainardi, On some properties of the Mittag-Leffler function, $E_{\alpha}(-t^{\alpha})$, completely monotone for t > 0 with 0 < ${\alpha}$ < 1, Discrete Contin. Dyn. Syst. Ser. B, 19(7)(2014), 2267-2278. https://doi.org/10.3934/dcdsb.2014.19.2267
  16. A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396(2005), 317-328. https://doi.org/10.1016/j.laa.2004.09.022
  17. A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Phys. A, 375(2007), 110-122. https://doi.org/10.1016/j.physa.2006.09.002
  18. A. M. Mathai and H. J. Haubold, On generalized distributions and pathways, Phys. Lett. A, 372(2008), 2109-2113. https://doi.org/10.1016/j.physleta.2007.10.084
  19. G. M. Mittag-Leffler, Sur la nouvelle fonction $E_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137(1903), 554-558.
  20. S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12(2009), 237-252.
  21. K. S. Nisar, A. F. Eata, M. Al-Dhaifallah and J. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution, Adv. Difference Equ., (2016), Paper No. 304, 17 pp.
  22. K. S. Nisar, S. D. Purohit and S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., 28(2016), 167-171. https://doi.org/10.1016/j.jksus.2015.08.005
  23. M. A. Ozarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., (2014), 2014:85, 10 pp. https://doi.org/10.1186/1029-242X-2014-85
  24. I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999.
  25. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
  26. S. D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., 5(2013), 639-651. https://doi.org/10.4208/aamm.12-m1298
  27. M. Saigo and A. A. Kilbas, On Mittag-Leffler type function and applications, Integral Transforms Spec. Funct., 7(1998), 97-112. https://doi.org/10.1080/10652469808819189
  28. T. O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal., 4(2009), 21-30.
  29. T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3(5)(2012), 1-13. https://doi.org/10.1142/9789814355216_0001
  30. H. J. Seybold and R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8(2005), 127-139.
  31. A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2007), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
  32. H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
  33. H. M. Srivastava, A note on the integral representation for the product of two generalized Rice polynomials, Collect. Math., 24(1973), 117-121.
  34. H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  35. H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of one and two variables with applications, South Asian Publishers, New Delhi and Madras, 1982.
  36. H. M. Srivastava and C. M. Joshi, Integral representation for the product of a class of generalized hypergeometric polynomials, Acad. Roy. Belg. Bull. Cl. Sci. (5), 60(1974), 919-926.
  37. H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211(1)(2009), 198-210. https://doi.org/10.1016/j.amc.2009.01.055
  38. V. V. Uchaikin, Fractional derivatives for physicists and engineers. Volume I. Background and Theory, Volume II. Applications, Nonlinear Physical Science, Springer-Verlag, Berlin-Heidelberg, 2013.
  39. A. Wiman, Uber den fundamentalsatz in der teorie der funktionen $E_{\alpha}(x)$, Acta Math., 29(1905), 191-201. https://doi.org/10.1007/BF02403202