References
- P. Agarwal and J. Choi, Certain fractional integral inequalities associated with pathway fractional integral operators, Bull. Korean Math. Soc., 53(1)(2016), 181-193. https://doi.org/10.4134/BKMS.2016.53.1.181
- D. Baleanu and P. Agarwal, A composition formula of the pathway integral transform operator, Note Mat., 34(2014), 145-155.
- D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus. Models and numerical methods, Series on Complexity, Nonlinearity and Chaos 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
- M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30(7)(2016), 1931-1939. https://doi.org/10.2298/FIL1607931C
- J. Choi and P. Agarwal, Certain inequalities involving pathway fractional integral operators, Kyungpook Math. J., 56(2016), 1161-1168. https://doi.org/10.5666/KMJ.2016.56.4.1161
- M. M. Dzrbasjan, Integral transforms and representations of functions in the complex domain, Nauka, Moscow, (in Russian), 1966.
- R. Gorenflo, A. A. Kilbas and S. V. Rogosin, On the generalized Mittag-Leffler type functions, Integral Transforms Spec. Funct., 7(1998), 215-224. https://doi.org/10.1080/10652469808819200
- R. Gorenflo, Y. Luchko and F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 118(2000), 175-191. https://doi.org/10.1016/S0377-0427(00)00288-0
- R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics(Udine, 1996), 223-276, CISM Courses and Lect., 378, Springer, Vienna, 1997.
- R. Gorenflo, F. Mainardi and H. M. Srivastava, Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena, Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), 195-202, VSP, Utrecht, 1998.
- R. Hilfer and H. Seybold, Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct., 17(2006), 637-652. https://doi.org/10.1080/10652460600725341
- A. A. Kilbas and M. Saigo, On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms Spec. Funct., 4(1996), 355-370. https://doi.org/10.1080/10652469608819121
- A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
-
F. Mainardi, On some properties of the Mittag-Leffler function,
$E_{\alpha}(-t^{\alpha})$ , completely monotone for t > 0 with 0 <${\alpha}$ < 1, Discrete Contin. Dyn. Syst. Ser. B, 19(7)(2014), 2267-2278. https://doi.org/10.3934/dcdsb.2014.19.2267 - A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396(2005), 317-328. https://doi.org/10.1016/j.laa.2004.09.022
- A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Phys. A, 375(2007), 110-122. https://doi.org/10.1016/j.physa.2006.09.002
- A. M. Mathai and H. J. Haubold, On generalized distributions and pathways, Phys. Lett. A, 372(2008), 2109-2113. https://doi.org/10.1016/j.physleta.2007.10.084
-
G. M. Mittag-Leffler, Sur la nouvelle fonction
$E_{\alpha}(x)$ , C. R. Acad. Sci. Paris, 137(1903), 554-558. - S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12(2009), 237-252.
- K. S. Nisar, A. F. Eata, M. Al-Dhaifallah and J. Choi, Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution, Adv. Difference Equ., (2016), Paper No. 304, 17 pp.
- K. S. Nisar, S. D. Purohit and S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., 28(2016), 167-171. https://doi.org/10.1016/j.jksus.2015.08.005
- M. A. Ozarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., (2014), 2014:85, 10 pp. https://doi.org/10.1186/1029-242X-2014-85
- I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999.
- T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1971), 7-15.
- S. D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., 5(2013), 639-651. https://doi.org/10.4208/aamm.12-m1298
- M. Saigo and A. A. Kilbas, On Mittag-Leffler type function and applications, Integral Transforms Spec. Funct., 7(1998), 97-112. https://doi.org/10.1080/10652469808819189
- T. O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal., 4(2009), 21-30.
- T. O. Salim and A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3(5)(2012), 1-13. https://doi.org/10.1142/9789814355216_0001
- H. J. Seybold and R. Hilfer, Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal., 8(2005), 127-139.
- A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2007), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
- H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
- H. M. Srivastava, A note on the integral representation for the product of two generalized Rice polynomials, Collect. Math., 24(1973), 117-121.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-functions of one and two variables with applications, South Asian Publishers, New Delhi and Madras, 1982.
- H. M. Srivastava and C. M. Joshi, Integral representation for the product of a class of generalized hypergeometric polynomials, Acad. Roy. Belg. Bull. Cl. Sci. (5), 60(1974), 919-926.
- H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211(1)(2009), 198-210. https://doi.org/10.1016/j.amc.2009.01.055
- V. V. Uchaikin, Fractional derivatives for physicists and engineers. Volume I. Background and Theory, Volume II. Applications, Nonlinear Physical Science, Springer-Verlag, Berlin-Heidelberg, 2013.
-
A. Wiman, Uber den fundamentalsatz in der teorie der funktionen
$E_{\alpha}(x)$ , Acta Math., 29(1905), 191-201. https://doi.org/10.1007/BF02403202