DOI QR코드

DOI QR Code

Graphene and Carbon Quantum Dots-based Biosensors for Use with Biomaterials

  • Lee, Cheolho (Department of Chemical and Biological Engineering, Seokyeong University) ;
  • Hong, Sungyeap (Department of Chemical and Biological Engineering, Seokyeong University)
  • Received : 2018.07.04
  • Accepted : 2018.12.06
  • Published : 2019.03.31

Abstract

Biosensors, which are analysis devices used to convert biological reactions into electric signals, are made up of a receptor component and a signal transduction part. Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) are new types of carbon nanoparticles that have drawn a significant amount of attention in nanoparticle research. The unique features exhibited by GQDs and CQDs are their excellent fluorescence, biocompatibility, and low cytotoxicity. As a result of these features, carbon nanomaterials have been extensively studied in bioengineering, including biosensing and bioimaging. It is extremely important to find biomaterials that participate in biological processes. Biomaterials have been studied in the development of fluorescence-based detection methods. This review provides an overview of recent advances and new trends in the area of biosensors based on GQDs and CQDs as biosensor platforms for the detection of biomaterials using fluorescence. The sensing methods are classified based on the types of biomaterials, including nucleic acids, vitamins, amino acids, and glucose.

Keywords

E1ICAW_2019_v17n1_49_f0001.png 이미지

Fig. 2. Schematic illustration of the fluorescence detection of biothiols based on NCQDs (reproduced from [48]).

E1ICAW_2019_v17n1_49_f0002.png 이미지

Fig. 3. Schematic illustration of the process used for AA recognition(reproduced from [66]).

E1ICAW_2019_v17n1_49_f0003.png 이미지

Fig. 4. Schematic of fluorometric and colorimetric assay for glucose detection based on Au@Ag NPs and C-dots (reproduced from [76]).

E1ICAW_2019_v17n1_49_f0004.png 이미지

Fig. 1. (A) Synthesis of P-CDs and (B) the quenching of fluorophore-labeled ssDNA using P-CDs while retaining their stable fluorescence intensity, enabling a ratiometric analytical method for Gardnerella vaginalis DNA with the target sequence circulating under the assistance of Exo III (reproduced from [35]).

Table 1. Comparison of reported techniques for the detection of DNA and amino acids

E1ICAW_2019_v17n1_49_t0001.png 이미지

Table 2. Comparison of reported techniques for the detection of glucose and pyrophosphate ions

E1ICAW_2019_v17n1_49_t0002.png 이미지

References

  1. R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B, vol. 264, pp. 193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.
  2. A. H. Loo, A. Bonanni, and M. Pumera, "Impedimetric thrombin aptasensor based on chemically modified graphenes," Nanoscale, vol. 4, pp. 143-147, 2012. DOI: 10.1039/C1NR10966A.
  3. S. Aiyer, R. Prasad, M. Kumar, K. Nirvikar, B. Jain, and O. S. Kushwaha, "Fluorescent carbon nanodots for targeted in vitro cancer cell imaging," Appl. Mater. Today, vol. 4, pp. 71-77, 2016. DOI: 10.1016/j.apmt.2016.07.001.
  4. X. Yan, H. Li, and X. Su, "Review of optical sensors for pesticides," Trends in Analytical Chemistry, vol. 103, pp. 1-20, 2018. DOI: 10.1016/j.trac.2018.03.004.
  5. J. J. Xu, W. W. Zhao, S. Song, C. Fan, and H. Y. Chen, "Functional nanoprobes for ultrasensitive detection of biomolecules: An update". Chem. Soc. Rev., vol 43, pp. 1601-1611, 2014. DOI: 10.1039/C3CS60277J.
  6. T. Drummond, M. Hill, and J. Barton, "Electrochemical DNA sensors," Nat. Biotechnol., vol. 21, pp. 1192-1199, 2003. DOI: 10.1038/nbt873.
  7. S. Aiyer, R. Prasad, M. Kumar, K. Nirvikar, B. Jain, and O. S. Kushwaha, "Fluorescent carbon nanodots for targeted in vitro cancer cell imaging," Appl. Mater. Today, vol. 4, pp. 71-77, 2016. DOI: 10.1016/j.apmt.2016.07.001.
  8. A. H. Loo, Z. Sofer, D. Bousa, P. Ulbrich, A. Bonanni, and M. Pumera, "Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection," ACS Appl. Mater. Interfaces, vol. 8, pp. 1951-1957, 2016. DOI: 10.1021/acsami.5b10160.
  9. Z. S. Qian, X. Y. Shan, L. J. Chai, J. J. Ma, J. R. Chen, and H. Feng, "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes," Biosensors and Bioelectronics, vol. 60, pp. 64-70, 2014. DOI: 10.1016/j.bios.2014.04.006.
  10. W. Qiang, W. Li, X. Li, X. Chen, and D. Xu, "Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules," Chem. Sci., vol. 5, pp. 3018-3024, 2014. DOI: 10.1039/C4SC00085D.
  11. B. Dubertret, M. Calame, and A. Libchaber, "Single-mismatch detection using gold-quenched fluorescent oligonucleotides," Nat. Biotechnol., vol. 19, pp. 365-370, 2001. DOI: 10.1038/86762.
  12. F. Li, H. Pei, L. Wang, J. Lu, J. Gao, B. Jiang, X. Zhao, and C. Fan, "Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles," Adv. Funct. Mater., vol. 23, pp. 4140-4148, 2013. DOI: 10.1002/adfm.201203816.
  13. Y. Wang and A. Hu, "Carbon Quantum Dots: Synthesis, Properties and Applications," J. Mater. Chem. C, vol. 2, pp. 6921-6939, 2014. DOI: 10.1039/C4TC00988F.
  14. S. Y. Lim, W. Shen, and Z. Gao, "Carbon quantum dots and their applications," Chem. Soc. Rev., vol. 44, pp. 362-381, 2015. DOI: 10.1039/C4CS00269E.
  15. S. Bhunia, A. Saha, A. Maity, S. Ray, and N. Jana, "Carbon nanoparticle-based fluorescent bioimaging probes," Sci. Rep., vol. 3, no. 1473, 2013. DOI: 10.1038/srep01473.
  16. B. Chen, F. Li, S. Li, W. Weng, H. Guo, T. Guo, X. Zhang, Y. Chen, T. Huang, X. Hong, S. You, Y. Lin, K. Zeng, and S. Chen, "Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging," Nanoscale, vol. 5, no. 5, pp. 196-1971, 2013. DOI: 10.1039/C2NR32675B.
  17. J. Kim, J. Park, H. Kim, K. Singha, and W. J. Kim, "Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA," Biomaterials, vol. 34, pp. 7168-7180, 2013. DOI: 10.1016/j.biomaterials.2013.05.072.
  18. M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, and Z. Sun, "Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine," Adv. Mater., vol. 26, no. 12, pp. 3554-3560, 2014. DOI: 10.1002/adma.201306192.
  19. X. Guo, C. F. Wang, Z. Y. Yu, L. Chen, and S. Chen, "Facile access to versatile fluorescent carbon dots toward light-emitting diodes," Chem. Commun., vol. 48, pp. 2692-2694, 2012. DOI: 10.1039/C2CC17769B.
  20. Q. Li, T. Y. Ohulchanskyy, R. Liu, K. Koynov, D. Wu, A. Best, R. Kumar, A. Bonoiu, and P. N. Prasad. "Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro," J. Phys. Chem. C, vol. 114, pp. 12062-12068, 2010. DOI: 10.1021/jp911539r.
  21. M. J. Krysmann, A. Kelarakis, P. Dallas, and E. P. Giannelis, "Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission," J. Am. Chem. Soc., vol. 134, pp. 747-750, 2012. DOI: 10.1021/ja204661r.
  22. X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, and J. Zhang, "Photo-fenton reaction of graphene oxide: A New strategy to prepare graphene quantum dots for DNA cleavage," ACS Nano, vol. 6, no. 8, pp. 6592-6599, 2012. DOI: 10.1021/nn301629v.
  23. H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yu, and X. Quan, "A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots," Chem. Commun., vol. 49, pp. 234-236, 2013. DOI: 10.1039/C2CC35503E.
  24. S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, "A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis," Adv. Funct. Mater., vol. 20, no. 3, pp. 453-459, 2010. DOI: 10.1002/adfm.200901639.
  25. D. Wang, L. Wang, X. Dong, Z. Shi, and J. Jin, "Chemically tailoring graphene oxides into fluorescent nanosheets for $Fe^{3+}$ ion detection," Carbon, vol. 50, no. 6, pp. 2147-2154, 2012. DOI: 10.1016/j.carbon.2012.01.021.
  26. X. Wang, L. Cao, S. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y. Sun, "Bandgap-like strong fluorescence in functionalized carbon nanoparticles," Angew Chem. Int. Ed., vol. 49, pp. 5310-5314, 2010. DOI: 10.1002/anie.201000982.
  27. L. Cao, M. J. Meziani, S. Sahu, and Y. P. Sun, "Photoluminescence properties of graphene versus other carbon nanomaterials," Acc. Chem. Res., vol. 46, no. 1, pp. 171-180, 2013. DOI: 10.1021/ar300128j.
  28. B. Y. Yu and S. Y. Kwak, "Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts," J. Mater. Chem., vol. 22, pp. 8345-8353, 2012. DOI: 10.1039/C2JM16931B.
  29. D. Giljohann, D. Seferos, W. Daniel, M. Massich, P. Patel, and C. Mirkin, "Gold nanoparticles for biology and medicine," Angew. Chem. Int. Ed., vol. 49, pp. 3280-3294, 2010. DOI: 10.1002/anie.200904359.
  30. M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Z. Zhang, Q. Lu, Y. Yu, H. Xu, Y. Zhao, and H. Zhang, "Ultrathin 2D metalorganic framework nanosheets," Adv. Mater., vol. 27, pp. 7372-7378, 2015. DOI: 10.1002/adma.201503648.
  31. A. D. Castaneda, N. J. Brenes, A. Kondajji, and R. M. Crooks, "Detection of microRNA by electrocatalytic amplification: A general approach for single-particle biosensing," J. Am. Chem. Soc, vol. 139, pp. 7657-7664, 2017. DOI: 10.1021/jacs.7b03648.
  32. Y. Yuan, S. Wu, F. Shu, and Z. Liu, "An $MnO_2$ nanosheet as a labelfree nanoplatform for homogeneous biosensing," Chem. Commun., vol. 50, pp. 1095-1097, 2014. DOI: 10.1039/C3CC47755J.
  33. J. Lee, J. Kim, S. Kim, and D. H. Min, "Biosensors based on graphene oxide and its biomedical application," Adv. Drug Deliver. Rev., vol. 105, pt. B, pp. 275-287, 2016. DOI: 10.1016/j.addr.2016.06.001.
  34. Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan, H. Li, B. Chen, J. Yang, J. Chen, Y. Huang, L. Wang, and H. Zhang, "Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid sensitive, and multiplexed detection of DNA," Adv. Mater., vol. 27, pp. 935-939, 2015. DOI: 10.1002/adma.201404568.
  35. R. Guo, B. Chen, F. lanLi, S. Weng, Z. Zheng, M. Chen, W. Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B: Chemical, vol. 264, pp. 193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.
  36. Y. T. Yew, A. H. Loo, Z. Sofer, K. Klímová, and M. Pumera, "Cokederived graphene quantum dots as fluorescence nanoquencher in DNA detection," Applied Materials Today, vol. 7, pp. 138-143, 2017. DOI: 10.1016/j.apmt.2017.01.002.
  37. A. H. Loo, Z. Sofer, D. Bousa, P. Ulbrich, A. Bonanni, and M. Pumera, "Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection," ACS Appl. Mater. Interfaces, vol. 8, pp. 1951-1957, 2016. DOI: 10.1021/acsami.5b10160.
  38. Z. S. Qian, X. Y. Shan, L. J. Chai, J. J. Ma, J. R. Chen, and H. Feng, "DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes," Biosensors and Bioelectronics, vol. 60, pp. 64-70, 2014. DOI: 10.1016/j.bios.2014.04.006.
  39. M. Isokawa, T. Kanamori, T. Funatsu, and M. Tsunoda, "Analytical methods involving separation techniques for determination of lowmolecular-weight biothiols in human plasma and blood," Journal of chromatography B, vol. 964, pp. 103-115, 2014. DOI: 10.1016/j.jchromb.2013.12.041.
  40. M. Labib, E. H. Sargent, and S. O. Kelley, "Electrochemical methods for the analysis of clinically relevant biomolecules," Chem. Rev., vol. 116, pp. 9001-9090, 2016. DOI: 10.1021/acs.chemrev.6b00220.
  41. E. Sharifi, A. Salimi, and E. Shams, "DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine," Bioelectrochemistry, vol. 86, pp. 9-21, 2012. DOI: 10.1016/j.bioelechem.2011.12.013.
  42. M. Ozyurek, S. Baki, N. Gungor, S. Celik, K. Guclu, and R. Apak, "Determination of biothiols by a novel on-line HPLC-DTNB assay with post-column detection," Anal. Chim. Acta, vol. 750, pp. 173-181, 2012. DOI: 10.1016/j.aca.2012.03.056.
  43. M. Isokawa, T. Funatsu, and M. Tsunoda, "Fast and simultaneous analysis of biothiols by high-performance liquid chromatography with fluorescence detection under hydrophilic interaction chromatography conditions," Analyst, vol. 138, pp. 3802-3808, 2013. DOI: 10.1039/c3an00527e.
  44. J. Espina, M. Montes-Bayon, E. Blanco-Gonzalez, and A. Sanz-Medel, "Determination of reduced homocysteine in human serum by elemental labelling and liquid chromatography with ICP-MS and ESI-MS detection," Anal. Bioanal. Chem., vol. 407, pp. 7899-7906, 2015. DOI: 10.1007/s00216-015-8956-z.
  45. E. M. Krupp, B. F. Milne, A. Mestrot, A. A. Meharg, and J. Feldmann, "Investigation into mercury bound to biothiols: Structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESIMS," Anal. Bioanal. Chem., vol. 390, pp. 1753-1764, 2008. DOI: 10.1007/S00216-008-1927-X.
  46. Z. Liu, Y. Liu, E. Kim, W. E. Bentley, and G. F. Payne, "Electrochemical probing through a redox capacitor to acquire chemical information on biothiols," Anal. Chem., vol. 88, pp. 7213-7221, 2016. DOI: 10.1021/acs.analchem.6b01394.
  47. S. Wu, X. Lan, F. Huang, Z. Luo, H. Ju, C. Meng, and C. Duan, "Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon," Biosensors and Bioelectronics, vol. 32, pp. 293-296, 2012. DOI: 10.1016/j.bios.2011.12.006.
  48. J. Yang, H. Wu, P. Yang, C. Houa, and D. Huo, "A high performance N-doped carbon quantumdots/5,5_-dithiobis-(2-nitrobenzoic acid) fluorescent sensor for biothiols detection," Sensors and Actuators B, vol. 255, pp. 3179-3186, 2018. DOI: 10.1016/j.snb.2017.09.143.
  49. S. Liao, X. Zhao, F. Zhu, M. Chen, Z. Wu, X. Song, H. Yang, and X. Chen, "Novel S, N-doped carbon quantum dot-based "off-on" fluorescent sensor for silver ion and cysteine," Talanta, vol. 180, pp. 300-308, 2018. DOI: 10.1016/j.talanta.2017.12.040.
  50. J. Hou, F. Zhang, X. Yan, L. Wang, J. Yan, H. Ding, and L. Ding, "Sensitive detection of biothiols and histidine based on the recovered fluorescence of the carbon quantum dots-Hg(II) system," Analytica Chimica Acta, vol. 859, pp.72-78, 2015. DOI: 10.1016/j.aca.2014.12.021.
  51. O. J. Achadu and T. Nyokong, "Graphene quantum dots decorated with maleimide and zinc tetramaleimido-phthalocyanine: Application in the design of "OFF-ON" fluorescence sensors for biothiols," Talanta, vol. 166, pp. 15-26, 2017. DOI: 10.1016/j.talanta.2017.01.031.
  52. Z. Li, Y. Wang, Y. Ni, and S. Koko, "A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots," Sensors and Actuators B, vol. 207, pp. 490-497, 2015. DOI: 10.1016/j.snb.2014.10.071.
  53. H. Li, Z. Kang, Y. Liu, and S. T. Lee, "Carbon nanodots: synthesis, properties and applications," J. Mater. Chem., vol. 22, pp. 24230-24253, 2012. DOI: 10.1039/C2JM34690G.
  54. C. Ding, A. Zhu, and Y. Tian, 'Functional surface engineering of Cdots for fluorescent biosensing and in vivo bioimaging," Acc. Chem. Res., vol. 47, pp. 20-30, 2014. DOI: 10.1021/ar400023s.
  55. L. Zhang, Y. Han, J. Zhu, Y. Zhai, and S. Dong, "Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots," Anal. Chem., vol. 87, pp. 2033-2036, 2015. DOI: 10.1021/ac5043686.
  56. T. Liu, N. Li, J. X. Dong, Y. Zhang, Y. Z. Fan, S. M. Lin, H. Q. Luo, and N. Bing Li, "A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite" Biosensors and Bioelectronics, vol. 87, pp. 772-778, 2017. DOI: 10.1016/j.bios.2016.08.098.
  57. L. Zhou, Y. H. Lin, Z. Z. Huang, J. S. Ren, and X. G. Qu, "Carbon nanodots as fluorescence probes for rapid sensitive, and label-free detection of $Hg^{2+}$ and biothiols in complex matrices," Chem. Commun., vol. 48, pp. 1147-1149, 2012. DOI: 10.1039/C2CC16791C.
  58. W. Zhenzhu, L. Wenying, C. Jian, and Y. Cong, "A Graphene quantum dot-based method for the highly sensitive and selective fluorescence turns on detection of biothiols," Talanta, vol. 119, pp. 538-543, 2014. DOI: 10.1016/j.talanta.2013.11.065.
  59. M. Zhang, and B. Ye, "Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles," Anal. Chem., vol. 83, pp. 1504-1509, 2011. DOI: 10.1021/ac102922f.
  60. L.Tan, J. Ge, M. Jiao, G. Jie, and S. Niu, "Amplified electrochemiluminescence detection of DNA based on novel quantum dots signal probe by multiple cycling amplification strategy," Talanta, vol. 183, pp. 108-113, 2018. DOI: 10.1016/j.talanta.2018.02.063.
  61. R. Guo, B. Chen, F. Li, S. Weng, Z. Zheng, M. Chen, Wu, X. Lin, and C. Yang, "Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA," Sensors and Actuators B, vol. 264, pp.193-201, 2018. DOI: 10.1016/j.snb.2018.02.175.
  62. S. Rostami, A. Mehdinia, and A. Jabbari, "Seed-mediated grown silver nanoparticles as acolorimetric sensor for detection of ascorbic acid," Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, vol. 180, pp. 204-210, 2017. DOI: 10.1016/j.saa.2017.03.020.
  63. D. Zhao, G. Yu, K. Tian, and C. Xu, "A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy," Biosensors & Bioelectronics, vol. 82, pp. 119-126, 2016. DOI: 10.1016/j.bios.2016.03.074.
  64. M. Szultka, M. Buszewska-Forajta, R. Kaliszan, and B. Buszewski, "Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry," Electrophoresis, vol. 35, no. 4, pp. 585-592, 2014. DOI: 10.1002/elps.201300439.
  65. D. R. Shankaran, K. Iimura, and T. Kato, "Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode," Sensors and Actuators B: Chemical, vol. 94, no. 1, pp. 73-80, 2003. DOI: 10.1016/S0925-4005(03)00327-7.
  66. H. Liu, W. Na, Z. Liu, X. Chen, and X. Su, "A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe," Biosensors and Bioelectronics, vol. 92, pp. 229-233, 2017. DOI: 10.1016/j.bios.2017.02.005.
  67. H. Liu, N. Li, H. Zhang, F. Zhang, and X. Su, "A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots," Talanta, In Press, Accepted Manuscript, May, 2018, [online] Available: https://www.sciencedirect.com/science/article/pii/S0039914018304739. DOI: 10.1016/j.talanta.2018.05.014.
  68. R. Liu, R. Yang, C. Qu, H. Mao, Y. Hu, J. Li, and L. Qu, "Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum," Sensors and Actuators B, vol. 241, pp. 644-651, 2017. DOI: 10.1016/j.snb.2016.10.096.
  69. X. Zhu, T. Zhao, Z. Nie, Y. Liu, and S. Yao, "Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis," Anal. Chem., vol. 87, pp. 8524-8530, 2015. DOI: 10.1021/acs.analchem.5b02167.
  70. Q. Wang, L. Yu, C. B. Qi, J. Ding, X. M. He, R. Q. Wang, and Y. Q. Feng, "Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry," Talanta, vol. 176, pp. 344-349, 2018. DOI: 10.1016/j.talanta.2017.08.055.
  71. X. Yu and Z. P. Yao, "Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review," Analytica Chimica Acta, vol. 968, pp. 1-20, 2017. DOI: 10.1016/j.aca.2017.03.021.
  72. X. Zhu, T. Zhao, Z. Nie, Y. Liu, and S. Yao, "Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis," Anal. Chem., vol. 87, pp. 8524-8530, 2015. DOI: 10.1021/acs.analchem.5b02167.
  73. Z. Xu, Y. Y. Ren, X. Fan, S. Cheng, Q. Xu, and L. Xu, "A naphthalimide-based fluorescent probe for highly selective detection of pyrophosphate in aqueous solution and living cells," Tetrahedron, vol. 71, pp. 5055-5058, 2015. DOI: 10.1016/j.tet.2015.05.111.
  74. H. R. Xu, K. Li, S. Y. Jiao, S. L. Pan, J. R. Zeng, and X. Q. Yu, "Tetraphenylethene-pyridine salts as the first self-assembling chemosensor for pyrophosphate," Analyst, vol. 140, pp. 4182-4188, 2015. DOI: 10.1039/C5AN00484E.
  75. H. Liu, Xing Li, M. Wang, X. Chen, X. Su, "A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots," Analytica Chimica Acta, vol. 990, pp. 150-156, 2017. DOI: 10.1016/j.aca.2017.07.031.
  76. W. Liu, F. Ding, Y. Wang, L. Mao, R. Liang, P. Zou, X. Wang, Q. Zhao, and H. Rao, "Fluorometric and colorimetric sensor array for discrimination of glucose using enzymatic-triggered dual-signal system consisting of Au@Ag nanoparticles and carbon nanodots," Sensors and Actuators B, vol. 265, pp. 310-317, 2018. DOI: 10.1016/j.snb.2018.03.060.
  77. Z. Liu, J. Xiao, X. Wu, L. Lin, S. Weng, M. Chen, X. Cai, and X. Lin, "Switch-on fluorescent strategy based on N and S co-doped graphene quantum dots (N-S/GQDs) for monitoring pyrophosphate ions in synovial fluid of arthritis patients," Sensors and Actuators B, vol. 229, pp. 217-224, 2016. DOI: 10.1016/j.snb.2016.01.127.
  78. S. Sun, X. Zhang, Y. Sun, S. Yang, X. Song, and Z. Yang, "Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor," ACS Appl. Mater. Interfaces, vol. 5, pp. 4429-4437, 2013. DOI: 10.1021/am400858j.
  79. L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, and G. Xu, "Copper nanoclusters as peroxidase mimetics and their applications to $H_2O_2$ and glucose detection," Anal. Chim. Acta, vol. 762, pp. 83-86, 2013. DOI: 10.1016/j.aca.2012.11.056.
  80. Y. Li, Y. Zhong, Y. Zhang, W. Weng, and S. Li, "Carbon quantum dots/octahedral $Cu_2O$ nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor," Sens. Actuators B, vol. 206, pp. 735-743, 2015. DOI: 10.1016/j.snb.2014.09.016.
  81. Y. L. Dong, H. G. Zhang, Z. U. Rahman, L. Su, X. J. Chen, J. Hu, and X. G. Chen, "Graphene oxide-$Fe_3O_4$ magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose," Nanoscale, vol 4, pp. 3969-3976, 2012. DOI: 10.1039/c2nr12109c.
  82. A. Ejaz, Y. Joo, and S. Jeon, "Fabrication of 1,4-bis(aminomethyl) benzene and cobalt hydroxide @ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin," Sensors and Actuators B: Chemical, vol. 240, pp. 297-307, 2017. DOI: 10.1016/j.snb.2016.08.171.
  83. J. Lovric, J. Dunevall, A. Larsson, L. Ren, S. Andersson, A. Meibom, P. Malmberg, M. E. Kurczy, and A. G. Ewing, "Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles," ACS nano, vol. 11, no. 4, pp. 3446-3455, 2017. DOI: 10.1021/acsnano.6b07233.
  84. F. Qu, W. Huang, and J. You, "A fluorescent sensor for detecting dopamine and tyrosinase activity by dual-emission carbon dots and gold nanoparticles," Colloids and Surfaces B: Biointerfaces, vol. 162, pp. 212-219, 2018. DOI: 10.1016/j.colsurfb.2017.