DOI QR코드

DOI QR Code

침하 저감용 보강재로 보강된 인공어초 설치 지반의 거동 특성

Behaviors of Artificial Reef Reinforced with Settlement Reduction Reinforcement

  • Yun, Daeho (Department of Ocean engineering, Pukyong National University) ;
  • Kim, Yuntae (Department of Ocean engineering, Pukyong National University)
  • 투고 : 2019.01.04
  • 심사 : 2019.02.25
  • 발행 : 2019.03.30

초록

본 연구에서는 인공어초의 침하 및 세굴을 저감하고자 다양한 보강재로 보강된 해저 지반의 침하 및 세굴 거동 특성을 알아보았다. 지반에 적용한 보강재는 총 3가지로서 지오그리드(geogrid), 지오그리드-대나무 매트(geogrid-bamboo mat, GBM) 및 해초-지지봉 매트(seaweed-pile mat, SPM)를 각각 보강하여 실험을 수행하였다. 모래, 실트 및 점토 지반에 대해 지지력 실험, 대형 수조 침하 실험, 2차원 흐름 수조 세굴 실험 등 다양한 실내 실험을 수행하였다. 실험 결과 보강재의 보강에 따라 인공어초의 지지력 증진, 침하 및 세굴이 저감되는 효과를 보였으며, 모래나 실트 지반보다 점토 지반과 같은 연약 지반에서 보강효과가 더 크게 나타나는 경향을 보였다.

This study investigated settlement and scouring characteristics of artificial reef reinforced with various reinforcement types to reduce settlement and scouring. Three reinforcement types were prepared: geogrid, geogrid-bamboo mat (GBM) and seaweed-pile mat (SPM). Various laboratory tests such as bearing capacity test, large size settlement test, two-dimensional flow scour test were performed according to different soil types (sand, silt, clay). Laboratory test results indicated that bearing capacity of seabed with a reinforced artificial reef increased and its settlement and scour depth reduced for all reinforcement types. Especially, reinforcement effect tends to be greater in clay soft ground rather than sand and silt grounds.

키워드

HKTHB3_2019_v18n1_1_f0001.png 이미지

Fig. 1. Particle size distributions

HKTHB3_2019_v18n1_1_f0002.png 이미지

Fig. 2. Reinforced type

HKTHB3_2019_v18n1_1_f0003.png 이미지

Fig. 3. Bearing capacity test

HKTHB3_2019_v18n1_1_f0004.png 이미지

Fig. 5. Two-dimensional flow scour test

HKTHB3_2019_v18n1_1_f0005.png 이미지

Fig. 4. The large size settlement test

HKTHB3_2019_v18n1_1_f0006.png 이미지

Fig. 6. BIR distribution according to reinforced types and soil types

HKTHB3_2019_v18n1_1_f0007.png 이미지

Fig. 7. Settlement behavior according to soil types

HKTHB3_2019_v18n1_1_f0008.png 이미지

Fig. 8. SRR distribution according to reinforced types

HKTHB3_2019_v18n1_1_f0009.png 이미지

Fig. 9. Relationship between BIR and SRR

HKTHB3_2019_v18n1_1_f0010.png 이미지

Fig. 10. Relationship between bearing capacity and settlement /length of AR

HKTHB3_2019_v18n1_1_f0011.png 이미지

Fig. 11. Scour depth according to soil types

HKTHB3_2019_v18n1_1_f0012.png 이미지

Fig. 12. SDR distribution according to reinforced types

HKTHB3_2019_v18n1_1_f0013.png 이미지

Fig. 13. Relationship between bearing capacity and SDR

Table 1. Geotechnical properties of soils

HKTHB3_2019_v18n1_1_t0001.png 이미지

Table 2. Law of similarity of reinforcement

HKTHB3_2019_v18n1_1_t0002.png 이미지

Table 3. Experimental conditions for the flow test

HKTHB3_2019_v18n1_1_t0003.png 이미지

참고문헌

  1. ASTM (1985), D 2487-83, Classification of Soils for Engineering Purposes, Annual Book of ASTM Standards, Vol.04, pp.395-408.
  2. Briaud, J. L., Ting F., Chen, H. C., Gudavalli, G. and Perugu, S. (1999), SRICOS : Prediction of Scour Rate in Cohesive Soils at Bridge Piers, Journal of Geotechnical and Geoenvironmental Engineering, Vol.125, No.4, pp.237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237)
  3. Briaud, J. L., Ting, F., Chen, H. C., Cao, Y., Han, S. W. and Kwak, K. S., (2001), Erosion Function Apparatus for Scour Rate Predictions, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.2. pp. 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
  4. Carr, M. H. and Hixon, M. A. (1997), Artificial reefs, The Importance of Comparisons with Natural Reefs, Fisheries, Vol.22, No.4, pp.28-33. https://doi.org/10.1577/1548-8446(1997)022<0028:ARTIOC>2.0.CO;2
  5. Je J. G., Lee, H. G. and Shin, S. H. (2003), Underwater Observation on Artificial Reefs in the Coastal Water of Gyeonggido, Korea, Journal of Underwater Science & Technology, Vol.4, No.1, pp.9-26.
  6. Jo, Y. C., Kim, W. K., Lee, C. S. and Kim, N. I. (2010), Investigation of Dice Artificial Reef Stability Installed (1981-2004 years) on Pohang Coast of the East Sea, Journal of the Korean Society of Marine Engineering, Vol.34, No.1, pp.177-182. https://doi.org/10.5916/jkosme.2010.34.1.177
  7. Kim H. S., Lee, J. W., Kim, J. R. and Yoon, H. S. (2009a), Estimation of Countermeasures and Efficient Use of Volume of Artificial Reefs Deployed in Fishing Grounds, Journal of the Korean Society for Marine Environmental Engineering, Vol.12, No.3, pp.181-187.
  8. Kim H. S., Lee, J. W., Won, S. H., Kim, J. R. and Yoon, H. S. (2009b), Estimation of Efficient Use of Volume and Facility Volume Distribution of Artificial Reefs deployed in the busan Sea Region, Journal of the Korean Society for Marine Environmental Engineering, Vol.12, No.4, pp.255-263.
  9. Kim, D. K., Kim, W. K., Son, Y. S., Yoon, J. T., Gong, Y. G., Kim, Y. D. and Lee, J. H. (2008), Settlement Characteristics of Three Type of Artificial Reefs on Sandy Bottom in the Eastern Coast of Korea, Journal of the Korean Society of Marine Engineering, Vol.32, No.2, pp.359-364. https://doi.org/10.5916/jkosme.2008.32.2.359
  10. Kim, D. K., Lee, J. Y., Suh, S. H., Kim, C. G., Cho, J. K. and Cha, B. Y. (2009), Scouring and Accumulation by Tidal Currents Around Cubic Artificial Reefs Installed at Geogeom Waterway, Journal of the Korean Society of Marine Eeingineering, Vol.33, No.8, pp.1275-1280. https://doi.org/10.5916/jkosme.2009.33.8.1275
  11. Kim, W. K., Lee, J. H., Kim, D. K., Jo, Q. T., Gong, Y. G. and Ahn, J. M. (2008), Stability of Artificial Reefs Installed in Gangwon Coastal Waters of the East Sea(Sea of Japan), Journal of the Korean Society of Marine Engineering, Vol.32, No.1, pp.200-205. https://doi.org/10.5916/jkosme.2008.32.1.200
  12. Kim, Y. K. (2011), Scour Characteristics Around Artificial Reefs using the CFD and Field Monitoring, Chonnam National University, Master's thesis, pp. 1-67.
  13. Lee, D. J. (2013), Monitoring of Fish Aggregations Responding to Artificial Reefs Using a Split-beam Echo Sounder, Side-scan Sonar, and an Underwater CCTV Camera System at Syeong Man, Busan, Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol.46, No.3, pp.266-272. https://doi.org/10.5657/KFAS.2013.0266
  14. Lee, J. H., Kim, W. K., Ahn, J. M. and Lee, C. S. (2010), Investigation of Conservation State of Two Types Artificial Reef on Physical Factors, Immersed in Gang won Coastal Waters of the East Sea, Journal of the Korean Society of Marine Engineering, Vol.34, No.1, pp.168-176. https://doi.org/10.5916/jkosme.2010.34.1.168
  15. Lee, M. J., Choi, S. K., Choo, H. W., Cho, Y. S. and Lee, W. J. (2008), Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method, Journal of the Korean Geotechnical Society, Vol.24, No.1, pp.91-99.
  16. Oh, S. J. (2009), Acoustical Investigations on the Distribution Characteristics of Fish School at the Artificial Reefs Area of Suyeong Man; Busan, Pukyong National University, Master's thesis, pp.1-22.
  17. Park, J. S., Seo, M. S. and Kim, J. H. (2001), A Study on the Research Condition and Efficiency of Artificial Reefs of Rokdo Sea Region of Chungnam Province, The Korea Society for Fisheries and Marine Sciences Education, Vol. 13, No.1, pp.87-98.
  18. Roberts, J., Jepsen, R., Gotthard, D. and Lick, W. (1998), Effects of Particle Size and Bulk Density on Erosion of Quartz Particles, Journal of Hydraulic Engineering, ASCE, Vol.124, No.12, pp.1261-1267. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:12(1261)
  19. Vaid, Y. P., Sivathayalan, D. S. and Stedman, D. (1999), Influence of Specimen Reconstituting Method on the Undrained Response of Sand, Journal of Geotechnical Testing, Vol.22, No.3, pp. 187-195. https://doi.org/10.1520/GTJ11110J