DOI QR코드

DOI QR Code

형광 발현 암세포 탐지를 위한 맞춤형 검출시스템 개발

Design of a customizable fluorescence detection system for fluorescently labeled tumor cells

  • Cho, Kyoungrae (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Seo, Jeong-hyeok (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Choe, Se-woon (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology)
  • 투고 : 2018.12.03
  • 심사 : 2018.12.28
  • 발행 : 2019.03.31

초록

유동 세포 분석법은 세포나 입자에 대하여 정밀하고 다양한 광학적 특성을 제공해주는 전기적 탐지 기술이다. 형광 처리된 세포나 미립자에 특정한 파장의 빛을 가함으로써 발생 되는 광 산란과 형광 방출을 통해 세포의 크기와 입상도를 포함한 다차원적인 정보를 제공해주는 유동 세포 분석법은 생체 의학 분야 또는 생물 물리학 분야에서 중요한 역할을 수행한다. 그러나 유동 세포 분석법은 고가이며 장비 설치에 있어 적절한 공간이 필요하고 형광 염료 선택에 제한적이라는 단점을 가지고 있다. 따라서 본 논문에서는, 상용화된 유동 세포 분석에 사용되는 고가의 레이저와 운영시스템 대신 발광 다이오드, 마이크로 컨트롤러와 광 검출기를 사용한 저가의 형광세포 측정 시스템을 개발하여 사용자가 원하는 형광 염료에 대한 자유도를 높였다. 또한, 3D 프린터를 사용하여 모듈별 소형화 및 경량화를 통한 사용자 맞춤형 제작이 가능하도록 하였다. 그 결과, 형광처리 한 세포의 양에 변화를 주어 발광도를 측정하였을 때, 높은 선형성이 보임을 확인할 수 있었다.

Flow cytometry is an electrical detection system that provides precise and diverse optical properties to cells and micro particles. Flow cytometry, which provides multidimensional information including cell size and granularity through light scattering and fluorescence emission generated by the induction of light of a specific wavelength to the fluorescently treated cells or micro particles, plays an important role in biomedical and biophysical fields. However, it has some drawbacks such as high cost, size of the instrument and limitation in selecting fluorescent dyes. Therefore, in this paper, a low cost compact fluorescent detection system is developed using light-emitting diode and microcontroller. The proposed fluorescence detection system has a replaceable the light source/fluorescence filter/photodetector and constructed by 3D printer, so that the user can design a customized system according to the selected fluorescent dyes. The fluorescence intensity was measured by varying the number of fluorescently labeled cells, and the measured intensities showed a high linearity within the tested concentration ranges.

키워드

HOJBC0_2019_v23n3_261_f0001.png 이미지

Fig. 1 Schematic design of a general FCM

HOJBC0_2019_v23n3_261_f0002.png 이미지

Fig. 2 Types of light scattering from a single cell.

HOJBC0_2019_v23n3_261_f0003.png 이미지

Fig. 3 Calcein AM spectra (top) and fluorescence image of calcein AM-stained HeLa cells (bottom)

HOJBC0_2019_v23n3_261_f0004.png 이미지

Fig. 4 Proposed fluorescence detection system. Constant current module (left), main module (middle) and display module (right)

HOJBC0_2019_v23n3_261_f0005.png 이미지

Fig. 5 Proposed constant current module (top) and its design (bottom)

HOJBC0_2019_v23n3_261_f0006.png 이미지

Fig. 6 Schematic design of the main module

HOJBC0_2019_v23n3_261_f0007.png 이미지

Fig. 7 Optical filter booklet (top) and selected excitation with emission filters (bottom)

HOJBC0_2019_v23n3_261_f0008.png 이미지

Fig. 8 The experimental results of the emitted light intensities of unstained (control) and stained HeLa cells with different photodiode sensitivities and various filter sets. (a) No excitation filter with #389 emission filter, (b) #74 excitation filter with #389 emission filter, (c) #369 excitation filter with #389 emission filter

Table. 1 Total cost of proposed system

HOJBC0_2019_v23n3_261_t0001.png 이미지

참고문헌

  1. Y. Chen, A. A. Nawaz, Y. Zhao, P. H. Huang, J. P. McCoy, S. .J. Levine, L. Wang, and T. J. Huang, "Standing surface acoustic wave (SSAW)-based microfluidic cytometer," Lab on a Chip, vol. 14, no. 5, pp. 916-923, Mar. 2014. https://doi.org/10.1039/C3LC51139A
  2. R. Lacroix, S. Robert, P. Poncelet, and F. Dignat-George, "Overcoming Limitations of Microparticle Measurement by Flow Cytometry," Seminars Thrombosis Hemostasis, vol. 36, no. 8, pp. 807-818, Nov. 2010. https://doi.org/10.1055/s-0030-1267034
  3. V. Pospichalova, J. Svoboda, Z. Dave, A. Kotrbova, K. Kaiser, D. Klemova, L. Ilkovics, A. Hampl, I. Crha, E, Jandakova, L. Minar, V. Weinberger, and V. Bryja, "Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer," The Journal of Extracellular Vesicles, vol. 4, no. 1, 25530, Mar. 2015. https://doi.org/10.3402/jev.v4.25530
  4. S. Choe, K. Park, C. Park, J. Ryu, and H. Choi, "Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell," Computer Assisted Surgery, vol. 22, pp. 79-85, Dec. 2017. https://doi.org/10.1080/24699322.2017.1379158
  5. M. J. Wilkerson, "Principles and applications of flow cytometry and cell sorting in companion animal medicine," Veterinary Clinics of North America: Small Animal Practice, vol. 42, no. 1, pp. 53-71, Jan. 2012. https://doi.org/10.1016/j.cvsm.2011.09.012
  6. S. Cointe, C. Judicone, S. Robert, M. J. Mooberry, P. Poncelet, M. Wauben, R. Nieuwland, N. S. Key, F. Dignat‐George, and R. Lacroix, "Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop," Journal of Thrombosis and Haemostasis, vol. 15, no. 1, pp. 187-193, Jan. 2017. https://doi.org/10.1111/jth.13514
  7. K. Cho, and S. Choe, "Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effect," Journal of the Korea Information and Communication Engineering, vol. 22, no. 9, pp. 1237-1242, Sep. 2018.
  8. K. Cho, and S. Choe, "Basic study on proliferation control of cancer cells using combined ultrasound and LED therapeutic module," Journal of the Korea Information and Communication Engineering, vol. 22, no. 8, pp. 1107-1113, Aug. 2018.