DOI QR코드

DOI QR Code

Isolation and characterization of 6 unrecorded Pseudomonas spp. from Korean soil

토양에서 분리한 국내 미기록종 Pseudomonas 속 6종의 생화학적 특성과 계통 분류

  • Kim, Hyun-Joong (Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University) ;
  • Jung, You-Jung (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources Graduate School of Biotechnology, Kyung Hee University) ;
  • Hur, Moonsuk (Biological Resources Research Department, National Institute of Biological Resources)
  • 김현중 (경희대학교 생명과학대학 식품생명공학 전공) ;
  • 정유정 (국립생물자원관 생물자원연구부 미생물자원과) ;
  • 김해영 (경희대학교 생명과학대학 식품생명공학 전공) ;
  • 허문석 (국립생물자원관 생물자원연구부 미생물자원과)
  • Received : 2018.11.30
  • Accepted : 2018.12.19
  • Published : 2019.03.31

Abstract

In 2017, as a study to discover indigenous prokaryotic species in Korea, a total of 6 bacterial strains assigned to the genus Pseudomonas were isolated from soil. From the high 16S rRNA gene sequence similarity (${\geq}99.5%$) and phylogenetic analysis with closely related species, the isolated strains were identified as independent Pseudomonas species which were unrecorded in Korea. The six Pseudomonas species were Pseudomonas mandelii, P. canadensis, P. thivervalensis, P. jessenii, P. lurida, and P. brenneri. Gram reaction, culture conditions, colony and cell morphology, basic physiological and biochemical characteristics are described in the species description section.

생명공학산업의 주요한 자원인 미생물의 가치는 날로 증대하고 있으며, 이로 인해 생물자원을 확보하기 위한 국가간의 경쟁은 심화되고 있다. 이에 다양한 환경에서 미생물자원을 발굴하고 특성을 확인하는 것은 미래의 잠재적 생물자원을 확보하는데 큰 의미가 있다. 본 연구에서는 Pseudomonas속에 속하는 6종의 미생물들을 일반 토양에서 분리하여 분자계통학적 분석을 통해 국내 미기록종임을 확인하였다. 본 연구로 확보된 미생물들은 자생 생물자원의 다양성을 늘리고, 산업계에 생물자원의 선택의 폭을 늘리는데 도움이 될 것으로 기대된다.

Keywords

MSMHBQ_2019_v55n1_39_f0001.png 이미지

Fig. 1. Phylogenetic tree of Pseudomonas spp. based on the 16S rRNA gene sequence analysis using the neighbor-joining method showing the position of the newly isolated Pseudomonas strains (highlighted in bold) compared with the closely reference Pseudomonas strains.

MSMHBQ_2019_v55n1_39_f0002.png 이미지

Fig. 2. Transmission electron micrograph of isolated Pseudomonas spp.

Table 1. Pseudomonas strains isolated from soil in this study

MSMHBQ_2019_v55n1_39_t0001.png 이미지

Table 2. Physiological and biochemical characteristics and differential carbohydrate assimilation patterns of isolated Pseudomonas spp. using API 20NE (2.1) kit, API ZYM kit, and API 32GN kit

MSMHBQ_2019_v55n1_39_t0002.png 이미지

References

  1. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N, Degraeve S, Christen R, and Gardan L. 2000. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol. 50, 9-18. https://doi.org/10.1099/00207713-50-1-9
  2. Anzai Y, Kim H, Park JY, Wakabayashi H, and Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50, 1563-1589. https://doi.org/10.1099/00207713-50-4-1563
  3. Baida N, Yazourh A, Singer E, and Izard D. 2001. Pseudomonas brenneri sp. nov., a new species isolated from natural mineral waters. Res. Microbiol. 152, 493-502. https://doi.org/10.1016/S0923-2508(01)01223-2
  4. Behrendt U, Ulrich A, Schumann P, Meyer JM, and Sproer C. 2007. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol. 57, 979-985. https://doi.org/10.1099/ijs.0.64793-0
  5. Berdy JJ. 2005. Bioactive microbial metabolites. J. Antibiot. 58, 1-26. https://doi.org/10.1038/ja.2005.1
  6. Jaspers E and Overmann J. 2004. Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 70, 4831-4839. https://doi.org/10.1128/AEM.70.8.4831-4839.2004
  7. Kimura M. 1983. Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1, 84-93.
  8. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E and Goodfellow M (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, USA.
  9. Lee YM, Kim GH, Jung YJ, Choe CD, Yim JH, Lee HK, and Hong SG. 2012. Polar and alpine microbial collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol. 35, 1433-1438. https://doi.org/10.1007/s00300-012-1182-7
  10. Lopez JR, Dieguez AL, Doce A, De la Roca E, De la Herran R, Navas JI, Toranzo AE, and Romalde JL. 2012. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneate (Moreau). Int. J. Syst. Evol. Microbiol. 62, 874-882. https://doi.org/10.1099/ijs.0.030601-0
  11. Mesbah M, Premachandran U, and Whitman WB. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159-167.
  12. Moore LR, Rocap G, and Chisholm SW. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464-467. https://doi.org/10.1038/30965
  13. Mulet M, Lalucat J, and Garcia-Valdes E. 2010. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 12, 1513-1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x
  14. Palleroni NJ. 1984. Genus I. Pseudomonas. pp. 141-199. In Krieg NR and Holt JG (eds.), Bergey's manual of systematic bacteriology, Vol. 2. The Williams & Wilkins Co., Baltimore, MD, USA.
  15. Peix A, Ramirez-Bahena MH, and Velazquez E. 2009. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9, 1132-1147. https://doi.org/10.1016/j.meegid.2009.08.001
  16. Saitou N, and Nei M. 1987. The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  17. Schadler S, Burkhardt C, and Kappler A. 2008. Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates. Geomicrobiol. J. 25, 228-239. https://doi.org/10.1080/01490450802153462
  18. Stanier RY, Palleroni NJ, and Doudoroff M. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159-271. https://doi.org/10.1099/00221287-43-2-159
  19. Tambong JT, Xu R, and Bromfield ESP. 2017. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization. Int. J. Syst. Evol. Microbiol. 67, 889-895. https://doi.org/10.1099/ijsem.0.001698
  20. Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  21. Verhille S, Baida N, Dabboussi F, Izard D, and Leclerc H. 1999. Taxonomic study of bacteria isolated from natural mineral waters: Proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst. Appl. Microbiol. 22, 45-58. https://doi.org/10.1016/S0723-2020(99)80027-7
  22. Weisburg WG, Barns SM, Pelletier DA, and Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991