DOI QR코드

DOI QR Code

Natural Origin Polymers: Applications as Wound Care Materials

자연 고분자 : 상처 치료 재료로 활용

  • Karadeniz, Fatih (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Sung, Hye Kyeong (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • Received : 2019.02.26
  • Accepted : 2019.03.26
  • Published : 2019.03.30

Abstract

Wound care is a health industry concern affecting millions worldwide. Recent increase in metabolic disorders such as diabetes comes with elevated risk of wound-based complications. Treatment and management of wounds are difficult practices due to complexity of the wound healing process. Conventional wound dressings and treatment applications only provide limited benefits which are mainly aimed to keep wound protected from external factors. To improve wound care, recent developments make biopolymers to be of high interest and importance to researchers and medical practitioners. Biopolymers are polymers or natural origin produced by living organisms. They are credited to be highly biocompatible and biodegradable. Currently, studies reported biopolymers to exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative and angiogenic activities which are crucial for effective wound management. Several biopolymers, namely chitosan, cellulose, collagen, hyaluronic acid and alginic acid have been already investigated and applied as wound dressing agents. Different derivatives of biopolymers have also been developed by cross-linking with other molecules, grafting with other polymers, and loading with bioactive agents or drugs which showed promising results towards wound healing without any undesired outcome such as scarring and physiological abnormalities. In this review, current applications of common biopolymers in wound treatment industry are highlighted to be a guide for further applications and studies.

상처 치료는 전세계 인류에 영향을 미치는 보건 산업계의 관심사다. 당뇨병과 같은 대사증후군 유병률 증가로 상처에 의한 합병증의 위험이 높아지고 상처치유의 복잡함 때문에 상처의 치료와 관리가 어렵다. 전통적 상처 드레싱은 제한된 보호기능을 제공하며, 상처 드레싱의 치료 능력을 향상시키기 위해 생체고분자 기반의 드레싱들이 개발되고있다. 생체고분자는 생분해성이 뛰어나고 생체적합성이 좋으며 효과적인 상처 관리에 중요한 항균, 항염증, 지혈, 세포증식, 혈관성 활동 등 다양한 효과가 있다. 키토산, 셀룰로오스, 콜라겐, 히알루론산, 알긴산 등의 여러 생체고분자가 이미 상처치유제로 활용되고 있으며 생체고분자를 다른 고분자, 생체활성 분자 및 약물과 결합하여 생리학적 문제 없이 흉터를 최소화하는 새로운 상처 드레싱이 개발되고 있다. 본 논문에서는, 향후의 연구와 활용을 위한 현재의 생체고분자의 상처처리에 대해 알아보았다.

Keywords

SMGHBM_2019_v29n3_382_f0001.png 이미지

Fig. 1. Stages and approximate time span of wound healing process.

SMGHBM_2019_v29n3_382_f0002.png 이미지

Fig. 2. Chemical structures of biopolymers used in wound dressings.

Table 1. Sources, biological roles and possible drawbacks of natural polymer wound dressings

SMGHBM_2019_v29n3_382_t0001.png 이미지

References

  1. Aderibigbe, B. A. and Buyana, B. 2018. Alginate in wound dressings. Pharmaceutics 10, 42. https://doi.org/10.3390/pharmaceutics10020042
  2. Agrawal, P., Soni, S., Mittal, G. and Bhatnagar, A. 2014. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds 13, 180-190. https://doi.org/10.1177/1534734614544523
  3. Ahmed, S. and Ikram, S. 2016. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci. 10, 27-37.
  4. Alemdaroglu, C., Degim, Z., Celebi, N., Zor, F., Ozturk, S. and Erdogan, D. 2006. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32, 319-327. https://doi.org/10.1016/j.burns.2005.10.015
  5. Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T. and Mooney, D. J. 2001. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dent. Res. 80, 2025-2029. https://doi.org/10.1177/00220345010800111501
  6. Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. 1996. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93-102. https://doi.org/10.1016/0142-9612(96)85754-1
  7. Avila Rodriguez, M. I., Rodriguez Barroso, L. G. and Sanchez, M. L. 2018. Collagen: a review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 17, 20-26. https://doi.org/10.1111/jocd.12450
  8. Bellis, S. L. 2011. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205-4210. https://doi.org/10.1016/j.biomaterials.2011.02.029
  9. Biagini, G., Bertani, A., Muzzarelli, R., Damadei, A., DiBenedetto, G., Belligolli, A., Riccotti, G., Zucchini, C. and Rizzoli, C. 1991. Wound management with N-carboxybutyl chitosan. Biomaterials 12, 281-286. https://doi.org/10.1016/0142-9612(91)90035-9
  10. Boateng, J. and Catanzano, O. 2015. Advanced therapeutic dressings for effective wound healing - a review. J. Pharm. Sci. 104, 3653-3680. https://doi.org/10.1002/jps.24610
  11. Bodnar, R. J. 2015. Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care 4, 641-650. https://doi.org/10.1089/wound.2014.0594
  12. Braiman-Wiksman, L., Solomonik, I., Spira, R. and Tennenbaum, T. 2007. Novel insights into wound healing sequence of events. Toxicol. Pathol. 35, 767-779. https://doi.org/10.1080/01926230701584189
  13. Brett, D. 2008. A review of collagen and collagen-based wound dressings. Wounds 20, 347-356.
  14. Chan, L. W., Kim, C. H., Wang, X., Pun, S. H., White, N. J. and Kim, T. H. 2016. PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage. Acta Biomater. 31, 178-185. https://doi.org/10.1016/j.actbio.2015.11.017
  15. Chaudhari, A., Vig, K., Baganizi, D., Sahu, R., Dixit, S., Dennis, V., Singh, S., Pillai, S., Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., Singh, S. R. and Pillai, S. R. 2016. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17, 1974. https://doi.org/10.3390/ijms17121974
  16. Chen, W. Y. and Abatangelo, G. 1999. Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79-89. https://doi.org/10.1046/j.1524-475X.1999.00079.x
  17. Chu, J., Shi, P., Yan, W., Fu, J., Yang, Z., He, C., Deng, X. and Liu, H. 2018. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of mscs differentiation potential and diabetic wound healing. Nanoscale 10, 9547-9560. https://doi.org/10.1039/C8NR02538J
  18. Cremar, L., Gutierrez, J., Martinez, J., Materon, L., Gilkerson, R., Xu, F. and Lozano, K. 2018. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Mashhad Univ. Med. Sci. 5, 6-14.
  19. Dabiri, G., Damstetter, E. and Phillips, T. 2016. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5, 32-41. https://doi.org/10.1089/wound.2014.0586
  20. Degim, Z., Celebi, N., Sayan, H., Babul, A., Erdogan, D. and Take, G. 2002. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22, 187-198. https://doi.org/10.1007/s007260200007
  21. Dhivya, S., Padma, V. V. and Santhini, E. 2015. Wound dressings - a review. BioMedicine 5, 22. https://doi.org/10.7603/s40681-015-0022-9
  22. Dias, A. M. A., Braga, M. E. M., Seabra, I. J., Ferreira, P., Gil, M. H. and de Sousa, H. C. 2011. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int. J. Pharm. 408, 9-19. https://doi.org/10.1016/j.ijpharm.2011.01.063
  23. Ehrlich, H. 2000. Collagen considerations in scarring and regenerative repair, pp. 99-113. In: Garg, H. G. and Longaker, M. T. (eds.), Scarless Wound Healing. CRC Press: Boca Raton, FL, USA.
  24. El Fawal, G. F., Abu-Serie, M. M., Hassan, M. A. and Elnouby, M. S. 2018. Hydroxyethyl cellulose hydrogel for wound dressing: fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 111, 649-659. https://doi.org/10.1016/j.ijbiomac.2018.01.040
  25. Gao, F., Liu, Y., He, Y., Yang, C., Wang, Y., Shi, X. and Wei, G. 2010. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 29, 107-116. https://doi.org/10.1016/j.matbio.2009.11.002
  26. Gao, F., Yang, C. X., Mo, W., Liu, Y. W. and He, Y. Q. 2008. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin. Investig. Med. 31, 106. https://doi.org/10.25011/cim.v31i3.3467
  27. Ghatak, S., Hascall, V. C., Rodriguez, R. M., Markwald, R. R. and Misra, S. 2017. Inflammation, wound healing, and fibrosis, pp. 195-209. In: Turksen, K. (ed.), Wound healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects. Wiley-Blackwell: Hoboken, NJ, USA.
  28. Golebiewska, E. M. and Poole, A. W. 2015. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29, 153-162. https://doi.org/10.1016/j.blre.2014.10.003
  29. Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A., Medrado, A. R. A. P., Gonzalez, A. C. de O., Costa, T. F., Andrade, Z. de A. and Medrado, A. R. A. P. 2016. Wound healing - a literature review. An. Bras. Dermatol. 91, 614-620. https://doi.org/10.1590/abd1806-4841.20164741
  30. Gunatillake, P. A., Adhikari, R. and Gadegaard, N. 2003. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1-16. https://doi.org/10.22203/eCM.v005a01
  31. Guo, S. and DiPietro, L. A. 2010. Factors affecting wound healing. J. Dent. Res. 89, 219-229. https://doi.org/10.1177/0022034509359125
  32. Gupta, S., Andersen, C., Black, J., de Leon, J., Fife, C., Lantis Ii, J. C., Niezgoda, J., Snyder, R., Sumpio, B., Tettelbach, W., Treadwell, T., Weir, D. and Silverman, R. P. 2017. Management of chronic wounds: diagnosis, preparation, treatment, and follow-up. Wounds a Compend. Clin. Res. Pract. 29, S19-S36.
  33. Gurtner, G. C., Werner, S., Barrandon, Y. and Longaker, M. T. 2008. Wound repair and regeneration. Nature 453, 314-321. https://doi.org/10.1038/nature07039
  34. Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Makitie, A., Luukko, K., Yliperttula, M. and Kavola, H. 2016. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292-301. https://doi.org/10.1016/j.jconrel.2016.07.053
  35. Hashemi Doulabi, A., Mirzadeh, H., Imani, M. and Samadi, N. 2013. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr. Polym. 92, 48-56. https://doi.org/10.1016/j.carbpol.2012.09.002
  36. Hoenich, N. A. 2007. Cellulose for medical applications: past, present, and future. BioResources 1, 270-280. https://doi.org/10.15376/biores.1.2.270-280
  37. Houghton, P. J., Hylands, P. J., Mensah, A. Y., Hensel, A. and Deters, A. M. 2005. In vitro tests and ethnopharmacological investigations: wound healing as an example. J. Ethnopharmacol. 100, 100-107. https://doi.org/10.1016/j.jep.2005.07.001
  38. Hu, M., Sabelman, E. E., Cao, Y., Chang, J. and Hentz, V. R. 2003. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. 67B, 586-592. https://doi.org/10.1002/jbm.b.20001
  39. Hu, Y., Zhang, Z., Li, Y., Ding, X., Li, D., Shen, C. and Xu, F. J. 2018. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 39, 1800069. https://doi.org/10.1002/marc.201800069
  40. Huang, J., Ren, J., Chen, G., Li, Z., Liu, Y., Wang, G. and Wu, X. 2018. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and plga microspheres for management of non-healing infected wounds. Mater. Sci. Eng. C 89, 213-222. https://doi.org/10.1016/j.msec.2018.04.009
  41. Huang, X., Li, L. D., Lyu, G. M., Shen, B. Y., Han, Y. F., Shi, J. L., Teng, J. L., Feng, L., Si, S. Y., Wu, J. H., Liu, Y. J., Sun, L. D. and Yan, C. H. 2018. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg. Chem. Front. 5, 386-393. https://doi.org/10.1039/C7QI00707H
  42. Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M. and Kurita, A. 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23, 833-840. https://doi.org/10.1016/S0142-9612(01)00189-2
  43. Ishihara, M., Ono, K., Sato, M., Nakanishi, K., Saito, Y., Yura, H., Matsui, T., Hattori, H., Fujita, M., Kikuchi, M. and Kurita, A. 2001. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen. 9, 513-521. https://doi.org/10.1046/j.1524-475x.2001.00513.x
  44. Jones, V., Grey, J. E. and Harding, K. G. 2006. Wound dressings. BMJ 332, 777-780. https://doi.org/10.1136/bmj.332.7544.777
  45. Kamoun, E. A., Kenawy, E. R. S. and Chen, X. 2017. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8, 217-233. https://doi.org/10.1016/j.jare.2017.01.005
  46. Karri, V. V. S. R., Kuppusamy, G., Talluri, S. V., Mannemala, S. S., Kollipara, R., Wadhwani, A. D., Mulukutla, S., Raju, K. R. S. and Malayandi, R. 2016. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519-1529. https://doi.org/10.1016/j.ijbiomac.2016.05.038
  47. Koehler, J., Brandl, F. P. and Goepferich, A. M. 2018. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 100, 1-11. https://doi.org/10.1016/j.eurpolymj.2017.12.046
  48. Korting, H., Schollmann, C. and White, R. 2011. Management of minor acute cutaneous wounds: importance of wound healing in a moist environment. J. Eur. Acad. Dermatol. Venereol. 25, 130-137. https://doi.org/10.1111/j.1468-3083.2010.03775.x
  49. Landen, N. X., Li, D. and Stahle, M. 2016. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861-3885. https://doi.org/10.1007/s00018-016-2268-0
  50. Laurens, N., Koolwijk, P. and De Maat, M. P. M. 2006. Fibrin structure and wound healing. J. Thromb. Haemost. 4, 932-939. https://doi.org/10.1111/j.1538-7836.2006.01861.x
  51. LeBaron, R. G. and Athanasiou, K. A. 2000. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 6, 85-103. https://doi.org/10.1089/107632700320720
  52. Lee, K. Y. and Mooney, D. J. 2012. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
  53. Li, H., Xue, Y., Jia, B., Bai, Y., Zuo, Y., Wang, S., Zhao, Y., Yang, W. and Tang, H. 2018. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr. Polym. 188, 92-100. https://doi.org/10.1016/j.carbpol.2018.01.102
  54. Li, J., Chen, J. and Kirsner, R. 2007. Pathophysiology of acute wound healing. Clin. Dermatol. 25, 9-18. https://doi.org/10.1016/j.clindermatol.2006.09.007
  55. Li, X., Chen, S., Zhang, B., Li, M., Diao, K., Zhang, Z., Li, J., Xu, Y., Wang, X. and Chen, H. 2012. In situ injectable nano-composite hydrogel composed of curcumin, n,o-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 437, 110-119. https://doi.org/10.1016/j.ijpharm.2012.08.001
  56. Li, X., Nan, K., Li, L., Zhang, Z. and Chen, H. 2012. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym. 88, 84-90. https://doi.org/10.1016/j.carbpol.2011.11.068
  57. Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M. and Hsu, S. 2013. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611. https://doi.org/10.1016/j.carbpol.2013.01.076
  58. Lindholm, C. and Searle, R. 2016. Wound management for the 21st century: combining effectiveness and efficiency. Int. Wound J. 13, 5-15. https://doi.org/10.1111/iwj.12623
  59. Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B. and Li, Y. 2018. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27-36. https://doi.org/10.1016/j.carbpol.2018.01.093
  60. Lloyd, L. L., Kennedy, J. F., Methacanon, P., Paterson, M. and Knill, C. J. 1998. Carbohydrate polymers as wound management aids. Carbohydr. Polym. 37, 315-322. https://doi.org/10.1016/S0144-8617(98)00077-0
  61. Martin, P. and Nunan, R. 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370-378. https://doi.org/10.1111/bjd.13954
  62. Miao, J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J. and Dordick, J. S. 2011. Lysostaphinfunctionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32, 9557-9567. https://doi.org/10.1016/j.biomaterials.2011.08.080
  63. Minagawa, T., Okamura, Y., Shigemasa, Y., Minami, S. and Okamoto, Y. 2007. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr. Polym. 67, 640-644. https://doi.org/10.1016/j.carbpol.2006.07.007
  64. Minutti, C. M., Knipper, J. A., Allen, J. E. and Zaiss, D. M. W. 2017. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3-11. https://doi.org/10.1016/j.semcdb.2016.08.006
  65. Mogosanu, G. D. and Grumezescu, A. M. 2014. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463, 127-136. https://doi.org/10.1016/j.ijpharm.2013.12.015
  66. Mohamad, N., Mohd Amin, M. C. I., Pandey, M., Ahmad, N. and Rajab, N. F. 2014. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr. Polym. 114, 312-320. https://doi.org/10.1016/j.carbpol.2014.08.025
  67. Moran, J. M., Pazzano, D. and Bonassar, L. J. 2003. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63-70. https://doi.org/10.1089/107632703762687546
  68. Morgan, C. and Nigam, Y. 2013. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis 16, 493-502. https://doi.org/10.1007/s10456-013-9341-1
  69. Moura, L. I. F., Dias, A. M. A., Leal, E. C., Carvalho, L., de Sousa, H. C. and Carvalho, E. 2014. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater. 10, 843-857. https://doi.org/10.1016/j.actbio.2013.09.040
  70. Murakami, K., Aoki, H., Nakamura, S., Nakamura, S., Takikawa, M., Hanzawa, M., Kishimoto, S., Hattori, H., Tanaka, Y., Kiyosawa, T., Sato, Y. and Ishihara, M. 2010. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83-90. https://doi.org/10.1016/j.biomaterials.2009.09.031
  71. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P. and de la Caba, K. 2017. Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 105, 1358-1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
  72. Obara, K., Ishihara, M., Ishizuka, T., Fujita, M., Ozeki, Y., Maehara, T., Saito, Y., Yura, H., Matsui, T., Hattori, H., Kikuchi, M. and Kurita, A. 2003. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24, 3437-3444. https://doi.org/10.1016/S0142-9612(03)00220-5
  73. Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. and Lu, J. 2008. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323-4332. https://doi.org/10.1016/j.biomaterials.2008.07.034
  74. Paul, W. and Sharma, C. P. 2004. Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 18, 18-23.
  75. Pereira, R. F. and Bartolo, P. J. 2016. Traditional therapies for skin wound healing. Adv. Wound Care 5, 208-229. https://doi.org/10.1089/wound.2013.0506
  76. Pereira, R., Mendes, A. and Bartolo, P. 2013. Alginate/aloe vera hydrogel films for biomedical applications. Procedia CIRP 5, 210-215. https://doi.org/10.1016/j.procir.2013.01.042
  77. Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G. and Parks, W. C. 1997. The activity of collagenase-1 is required for keratinocyte migration on a type i collagen matrix. J. Cell Biol. 137, 1445-1457. https://doi.org/10.1083/jcb.137.6.1445
  78. Powers, J. G., Higham, C., Broussard, K. and Phillips, T. J. 2016. Wound healing and treating wounds: chronic wound care and management. J. Am. Acad. Dermatol. 74, 607-625. https://doi.org/10.1016/j.jaad.2015.08.070
  79. Rathi, S., Saka, R., Domb, A. J. and Khan, W. 2019. Proteinbased bioadhesives and bioglues. Polym. Adv. Technol. 30, 217-234. https://doi.org/10.1002/pat.4465
  80. Revelli, L., Tempera, S. E., Bellantone, C., Raffaelli, M. and Lombardi, C. P. 2016. Topical hemostatic agents, pp. 249-259. In: Lombardi, C. P. and Bellantone R. (eds.), Minimally Invasive Therapies for Endocrine Neck Diseases. Springer Publishing: Cham, Switzerland.
  81. Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., Roh, S., Cho, J. J., Park, W. H. and Min, B. M. 2006. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452-1461. https://doi.org/10.1016/j.biomaterials.2005.08.004
  82. Rodriguez, D., Morrison, C. J. and Overall, C. M. 2010. Matrix metalloproteinases: what do they not do? new substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39-54. https://doi.org/10.1016/j.bbamcr.2009.09.015
  83. Roh, D. H., Kang, S. Y., Kim, J. Y., Kwon, Y. B., Young Kweon, H., Lee, K. G., Park, Y. H., Baek, R. M., Heo, C. Y., Choe, J. and Lee, J. H. 2006. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med. 17, 547-552. https://doi.org/10.1007/s10856-006-8938-y
  84. Shi, L., Zhao, Y., Xie, Q., Fan, C., Hilborn, J., Dai, J. and Ossipov, D. A. 2018. Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv. Healthc. Mater. 7, 1700973. https://doi.org/10.1002/adhm.201700973
  85. Simoes, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonca, A. G. and Correia, I. J. 2018. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. 127, 130-141. https://doi.org/10.1016/j.ejpb.2018.02.022
  86. Singer, A. J. and Clark, R. A. F. 1999. Cutaneous wound healing. N. Engl. J. Med. 341, 738-746. https://doi.org/10.1056/NEJM199909023411006
  87. Slominski, A. T., Zmijewski, M. A., Semak, I., Kim, T. K., Janjetovic, Z., Slominski, R. M. and Zmijewski, J. W. 2017. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 74, 3913-3925. https://doi.org/10.1007/s00018-017-2617-7
  88. Squarize, C. H., Castilho, R. M., Bugge, T. H. and Gutkind, J. S. 2010. Accelerated wound healing by mtor activation in genetically defined mouse models. PLoS One 5, e10643. https://doi.org/10.1371/journal.pone.0010643
  89. Stone, C. A., Wright, H., Devaraj, V. S., Clarke, T. and Powell, R. 2000. Healing at skin graft donor sites dressed with chitosan. Br. J. Plast. Surg. 53, 601-606. https://doi.org/10.1054/bjps.2000.3412
  90. Sun, L., Gao, W., Fu, X., Shi, M., Xie, W., Zhang, W., Zhao, F. and Chen, X. 2018. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater. Sci. 6, 340-349. https://doi.org/10.1039/C7BM00545H
  91. Tamayol, A., Mohammadi, M. H., Bagherifard, S., Khademhosseini, A., Akbari, M., Serex, L., Faramarzi, N. and Mostafalu, P. 2016. Textile technologies and tissue engineering: a path toward organ weaving. Adv. Healthc. Mater. 5, 751-766. https://doi.org/10.1002/adhm.201500517
  92. Tamer, T. M., Valachova, K., Hassan, M. A., Omer, A. M., El-Shafeey, M., Mohy Eldin, M. S. and Soltes, L. 2018. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: in vitro and in vivo evaluation studies. Mater. Sci. Eng. C 90, 227-235. https://doi.org/10.1016/j.msec.2018.04.053
  93. Thomas, S. 2000. Alginate dressings in surgery and wound management - part 1. J. Wound Care 9, 56-60. https://doi.org/10.12968/jowc.2000.9.2.26338
  94. Tsala, D. E., Amadou, D. and Habtemariam, S. 2013. Natural wound healing and bioactive natural products. Phytopharmacology 4, 532-560.
  95. Ueno, H., Mori, T. and Fujinaga, T. 2001. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105-15. https://doi.org/10.1016/S0169-409X(01)00189-2
  96. Wagenhauser, M. U., Mulorz, J., Ibing, W., Simon, F., Spin, J. M., Schelzig, H. and Oberhuber, A. 2016. Oxidized (non)-regenerated cellulose affects fundamental cellular processes of wound healing. Sci. Rep. 6, 32238. https://doi.org/10.1038/srep32238
  97. Wahl, D. A., Sachlos, E., Liu, C. and Czernuszka, J. T. 2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18, 201-209.
  98. Wang, L., Khor, E., Wee, A. and Lim, L. Y. 2002. Chitosan-alginate pec membrane as a wound dressing: assessment of incisional wound healing. J. Biomed. Mater. Res. 63, 610-618. https://doi.org/10.1002/jbm.10382
  99. WHO 2010. Injuries and violence: The facts. Available at: http://www.who.int/violence_injury_prevention/key_facts/en/ (Accessed: 12 February 2019).
  100. Wu, J., Zheng, Y., Song, W., Luan, J., Wen, X., Wu, Z., Chen, X., Wang, Q. and Guo, S. 2014. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slowreleased antimicrobial wound dressing. Carbohydr. Polym. 102, 762-771. https://doi.org/10.1016/j.carbpol.2013.10.093
  101. Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q. and Li, K. 2018. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int. J. Biol. Macromol. 107, 93-104. https://doi.org/10.1016/j.ijbiomac.2017.08.142
  102. Xue, M. and Jackson, C. J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 4, 119-136. https://doi.org/10.1089/wound.2013.0485
  103. Yang, D. and Jones, K. S. 2009. Effect of alginate on innate immune activation of macrophages. J. Biomed. Mater. Res. Part A 90A, 411-418. https://doi.org/10.1002/jbm.a.32096
  104. Yang, X., Liu, W., Li, N., Wang, M., Liang, B., Ullah, I., Luis Neve, A., Feng, Y., Chen, H. and Shi, C. 2017. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 5, 2357-2368. https://doi.org/10.1039/C7BM00554G
  105. Yew, T. L., Hung, Y. T., Li, H. Y., Chen, H. W., Chen, L. L., Tsai, K. S., Chiou, S. H., Chao, K. C., Huang, T. F., Chen, H. L. and Hung, S. C. 2011. Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 mapk activation. Cell Transplant. 20, 693-706. https://doi.org/10.3727/096368910X550198
  106. Yildirim, S., Ozener, H. O., Dogan, B. and Kuru, B. 2017. Effect of topically-applied hyaluronic-acid on pain and palatal epithelial wound healing: an examiner-blind, randomized, controlled clinical trial. J. Periodontol. 89, 1-14. https://doi.org/10.1002/jper.10059
  107. Younes, I., Rinaudo, M., Younes, I. and Rinaudo, M. 2015. Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar. Drugs 13, 1133-1174. https://doi.org/10.3390/md13031133
  108. Zhang, D. L., Gu, L. J., Liu, L., Wang, C. Y., Sun, B. S., Li, Z. and Sung, C. K. 2009. Effect of wnt signaling pathway on wound healing. Biochem. Biophys. Res. Commun. 378, 149-151. https://doi.org/10.1016/j.bbrc.2008.11.011
  109. Zhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W. and Dai, H. 2018. Influence of different divalent ions crosslinking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 197, 292-304. https://doi.org/10.1016/j.carbpol.2018.05.078