DOI QR코드

DOI QR Code

Comparison of Main Circuit Type Characteristics of LED Driver for Output Ripple Reduction

출력 리플 저감을 위한 LED 드라이버의 주회로 방식 특성 비교

  • Park, Dae-Su (Korea University of Technology and Education, School of Electrical, Electrics and Communication Engineering) ;
  • Kim, Tae-Kyung (Korea University of Technology and Education, School of Electrical, Electrics and Communication Engineering) ;
  • Oh, Sung-Chul (Korea University of Technology and Education, School of Electrical, Electrics and Communication Engineering)
  • 박대수 (한국기술교육대학교 전기전자통신공학과) ;
  • 김태경 (한국기술교육대학교 전기전자통신공학과) ;
  • 오성철 (한국기술교육대학교 전기전자통신공학과)
  • Received : 2018.07.25
  • Accepted : 2019.03.08
  • Published : 2019.03.31

Abstract

Recently, there has been increasing demand for power quality in power supply devices. The IEC 61000-3-2 standard requires that the AC / DC power supply for lighting meet the specifications for the power factor (PF) and total waveform distortion (THD). In addition, advanced countries in Europe are regulating the ripple rate as 15 ~ 30% for the flicker phenomenon caused by the change in the amount of foot energy due to the change in current of the output terminal. Therefore, domestic standards and regulations are being updated. This study adopted the Flyback converter to satisfy the PFC standard, and has the circuit first and second insulation function. To reduce the low frequency ripple of the LED current, Flyback, Coupled Inductor, LC parallel resonance filter, LLC resonance filter, and Cuk were simulated by PSIM to mimic each LED driving circuit. A coupled LC resonant circuit with a coupled inductor on the primary side and LC resonance on the secondary side was also proposed for output side ripple reduction.

최근에, 전원 공급 장치에 있어서 파워의 품질에 대한 요구가 높아지고 있다. IEC 61000-3-2 규격은 조명을 위한 AC/DC 전원 공급 장치에 대하여 역률(PF)과 전체 파형 왜곡률(THD)에 대한 규격을 만족하도록 요구하고 있다. 또 출력단의 전류 변화에 의해 발광체 광량이 바뀜에 따라 발생되는 플리커 현상에 대해 유럽권 선진국가는 ripple rate의 기준을 15~30%로 설정해 규제하고 있다. 따라서 국내에서도 기준을 마련하고 규제를 추진 중에 있다. 그래서 본 논문은 PFC 규격을 만족하고, 회로 1차, 2차 간 절연 기능을 가지기 위해 Flyback 컨버터를 적용하며, LED 전류의 저주파 리플을 저감하기 위해 Flyback, Coupled Inductor, LC 병렬 공진 필터, LLC 공진 필터, Cuk을 이용한 각각의 LED 구동회로를 PSIM을 통해 시뮬레이션 함으로써 각각의 방식들을 비교하였으며, 출력측 리플 저감을 위해 1차측에 Coupled Inductor와 2차측에 LC 공진을 적용한 Coupled LC 공진 회로를 제안하였으며, Coupled LC 공진 방식은 출력 커패시터가 78uF으로 작으며, 출력 리플은 전압 2.38V, 전류 0.05A로 기존의 방식보다 22%의 출력 리플 저감을 확인 하였다.

Keywords

SHGSCZ_2019_v20n3_491_f0001.png 이미지

Fig. 1. One-stage AC-DC Coverter

SHGSCZ_2019_v20n3_491_f0002.png 이미지

Fig. 2. One-stage PFC Flyback Converter

SHGSCZ_2019_v20n3_491_f0003.png 이미지

Fig. 3. Theoretical wave of BCM PFC[5]

SHGSCZ_2019_v20n3_491_f0004.png 이미지

Fig. 4. Typical Flyback circuit

SHGSCZ_2019_v20n3_491_f0005.png 이미지

Fig. 5. Typical Flyback circuit output voltage waveform

SHGSCZ_2019_v20n3_491_f0006.png 이미지

Fig. 6. Typical Flyback circuit output current waveform

SHGSCZ_2019_v20n3_491_f0007.png 이미지

Fig. 7. Out stage LC resonant circuit

SHGSCZ_2019_v20n3_491_f0008.png 이미지

Fig. 8. Out stage LC resonant circuit Output voltage waveform

SHGSCZ_2019_v20n3_491_f0009.png 이미지

Fig. 9. Out stage LC resonant circuit Output current waveform

SHGSCZ_2019_v20n3_491_f0010.png 이미지

Fig. 10. Coupled Inductor circuit

SHGSCZ_2019_v20n3_491_f0011.png 이미지

Fig. 11. Coupled Inductor circuit Output Voltage Waveform

SHGSCZ_2019_v20n3_491_f0012.png 이미지

Fig. 12. Coupled Inductor circuit Output Current Waveform

SHGSCZ_2019_v20n3_491_f0013.png 이미지

Fig. 13. LLC resonant circuit

SHGSCZ_2019_v20n3_491_f0014.png 이미지

Fig. 14. LLC resonant circuit output voltage waveform

SHGSCZ_2019_v20n3_491_f0015.png 이미지

Fig. 15. LLC resonant circuit output current waveform

SHGSCZ_2019_v20n3_491_f0016.png 이미지

Fig. 16. Cuk circuit

SHGSCZ_2019_v20n3_491_f0017.png 이미지

Fig. 17. Cuk circuit output voltage waveform

SHGSCZ_2019_v20n3_491_f0018.png 이미지

Fig. 18. Cuk circuit output current waveform

SHGSCZ_2019_v20n3_491_f0019.png 이미지

Fig. 19. Current waveforms flowing through the coupled Inductor [8]

SHGSCZ_2019_v20n3_491_f0020.png 이미지

Fig. 20. LC parallel resonance filter[9]

SHGSCZ_2019_v20n3_491_f0021.png 이미지

Fig. 21. Coupled LC resonant circuit

SHGSCZ_2019_v20n3_491_f0022.png 이미지

Fig. 22. Coupled LC resonant circuit output voltage waveform

SHGSCZ_2019_v20n3_491_f0023.png 이미지

Fig. 23. Coupled LC resonant circuit output current waveform

Table 1. System parameters

SHGSCZ_2019_v20n3_491_t0001.png 이미지

Table 2. Simulation results and circuit comparison table

SHGSCZ_2019_v20n3_491_t0002.png 이미지

References

  1. Choon-Tack Kim, "Optimal Hysteresis Control for CCM Driving of a Single-Stage PFC Flyback Converter for LED Lightings", The Transactions of the Korean Institute of Electrical Engineers, pp. 586-592, 2016.
  2. Gyung-Seok Han, "Single-stage LED Driver Circuit of Primary Side Control", 2015.
  3. Hye-Ri Kim, "Wind turbine/Photovoltaic Hybrid Converter Using Coupled Inductor", 2014.
  4. Yong-Sung Jeon, Dal-Lae Jin, Jae-Du La, Young-Seok Kim, " Study of the Elimination of the Electrolytic Capacitors and Reduction of the Ripple Current on the Output Node in the One-Stage PFC Flyback Converter for the LED Lighting", The transactions of The Korean Institute of Electrical Engineers, pp. 1625-1633, 2011. https://doi.org/10.5370/KIEE.2012.61.11.1625
  5. Yong-Sung Jeon, "A Study on Single-stage PFC Flyback Converter for LED Lighting without Electrolytic Capacitors", 2013.
  6. Chang-Gyo Jung, "Using PWM controller LLC Resonant Converter", 2011.
  7. sheng xu-Piao, "Improve output Ripple by Cuk Converter for Bi-directional Charging Discharge", 2016.
  8. Yi Li, "Design and Control of a Single-Stage LED Driver with Low Output Current Ripple", 2016.
  9. Choon-Tack Kim, Young-Seok Kim, "The Study of Ripple Reduction of the PFC CCM Flyback Converter without Electrolytic Capacitor for LED Lightings using LC Resonant Filter", The transactions of The Korean Institute of Electrical Engineers, pp. 601-610, 2016.