DOI QR코드

DOI QR Code

Estimation of Baseflow based on Master Recession Curves (MRCs) Considering Seasonality and Flow Condition

계절·유황특성을 고려한 주지하수감수곡선을 활용한 기저유출분리 평가

  • Yang, Dongseok (Department of Regional Infrastructure Eng., Kangwon National University) ;
  • Lee, Seoro (Department of Regional Infrastructure Eng., Kangwon National University) ;
  • Lee, Gwanjae (Department of Regional Infrastructure Eng., Kangwon National University) ;
  • Kim, Jonggun (Agriculture and Life Science Research Institute, Kangwon National University) ;
  • Lim, Kyoung Jae (Department of Regional Infrastructure Eng., Kangwon National University) ;
  • Kim, Ki-Sung (Department of Regional Infrastructure Eng., Kangwon National University)
  • 양동석 (강원대학교 지역건설공학과) ;
  • 이서로 (강원대학교 지역건설공학과) ;
  • 이관재 (강원대학교 지역건설공학과) ;
  • 김종건 (강원대학교 농업생명과학연구소) ;
  • 임경재 (강원대학교 지역건설공학과) ;
  • 김기성 (강원대학교 지역건설공학과)
  • Received : 2018.10.17
  • Accepted : 2019.02.08
  • Published : 2019.02.28

Abstract

Baseflow which is one of the unmeasurable components of streamflow and slowly flows through underground is important for water resource management. Despite various separation methods from researches preceded, it is difficult to find a significant separation method for baseflow separation. This study applied the MRC method and developed the improved approach to separate baseflow from total streamflow hydrograph. Previous researchers utilized the whole streamflow data of study period at once to derive synthetic MRCs causing unreliable results. This study has been proceeded with total nine areas with gauging stations. Each three areas are selected from 3 domestic major watersheds. Tool for drawing MRC had been used to draw MRCs of each area. First, synthetic MRC for whole period and two other MRCs were drawn following two different criteria. Two criteria were set by different conditions, one is flow condition and the other is seasonality. The whole streamflow was classified according to seasonality and flow conditions, and MRCs had been drawn with a specialized program. The MRCs for flow conditions had low R2 and similar trend to recession segments. On the other hand, the seasonal MRCs were eligible for the baseflow separation that properly reflects the seasonal variability of baseflow. Comparing two methods of assuming MRC for baseflow separation, seasonal MRC was more effective for relieving overestimating tendency of synthetic MRC. Flow condition MRCs had a large distribution of the flow and this means accurate MRC could not be found. Baseflow separation using seasonal MRC is showing more reliability than the other one, however if certain technique added up to the flow condition MRC method to stabilize distribution of the streamflow, the flow conditions method could secure reliability as much as seasonal MRC method.

기저유출은 지표하를 통하여 느리게 하천으로 유입되며 하천 관리에 있어서 중요한 요소이다. 기저유출의 정확한 파악을 위하여 본 연구에서 활용된 주지하수감수곡선(MRC) 방법을 포함한 다양한 방법들이 연구되었지만, 측정 불가능한 기저유출의 특성상 정량적인 평가는 어렵다. MRC를 활용한 선행 연구들은 연구 기간 내에 존재하는 모든 감수부를 활용하였으며 이는 국내환경에서 부정확한 MRC를 유도하였다. 본 연구는 기존에 행해지던 주지하수감수곡선(MRC) 분리방법을 국내 특성을 고려하여 계절과 유황특성으로 구분하고 기저유출 분리에 적용하였다. 연구대상지역은 한강, 낙동강 그리고 금강수계에서 각 3곳의 유량관측점을 선정하여 총 9 곳이며, 수리구조물의 영향이 없도록 상류지역에서 선정하였다. MRC를 도출하기 위하여 기존에 제작된 프로그램을 사용하였으며, 관측점 별로 총 세 개의 MRC를 도출하였다. 전체 기간에 대한 MRC와 본 연구에서 구분한 계절과 유황을 고려한 MRC 두 가지이다. 유황을 고려한 MRC는 낮은 R2값과 감수곡선과 비슷한 추세의 MRC를 도출하였다. 계절을 고려한 MRC의 경우 기저유출분리에 적합한 양상을 보여주었으며 계절별 특성이 뚜렷하게 반영된 MRC를 도출하였다. 두 가지 방법에 따라 도출된 MRC를 비교하였을 때, 계절을 고려한 MRC는 기존의 MRC를 사용한 분리과정에서 과산정 되었던 기저유출량이 감소되고 안정되게 분리되었다. 유황을 고려한 MRC의 경우 그래프 상의 감수부가 다양한 감수양상을 가지고 있었으며 이에 따라 낮은 R2값의 MRC가 도출되었다. 따라서 기저유출을 분리하기 위해선 계절을 고려한 MRC가 더 높은 정확성을 보일 것으로 판단되며, 유황을 고려한 MRC의 경우, 추가적인 보정 작업을 통해서 신뢰도 높은 MRC의 도출이 필요할 것으로 판단된다.

Keywords

HKSJBV_2019_v21n1_34_f0001.png 이미지

Fig. 1. Study areas: (A) Han river, (B) Nakdong river, (C) Geum river

HKSJBV_2019_v21n1_34_f0002.png 이미지

Fig. 2. Flow condition MRCs

HKSJBV_2019_v21n1_34_f0003.png 이미지

Fig. 3. Seasonal MRC

HKSJBV_2019_v21n1_34_f0004.png 이미지

Fig. 4. Baseflow separation of (a)Seoul, (b)Panun, and (c)Sancheong station using seasonal MRC (Autumn) and synthetic MRC

Table 1. Portion(%) of streamflow for each season of all study area

HKSJBV_2019_v21n1_34_t0001.png 이미지

Table 2. Criteria detail for Flow regime and Seasonality

HKSJBV_2019_v21n1_34_t0002.png 이미지

Table 3. Recession coefficients (k) of the flow condition MRCs

HKSJBV_2019_v21n1_34_t0003.png 이미지

Table 4. MRC equations and R2 of each station for four flow conditions of each gauging stations

HKSJBV_2019_v21n1_34_t0004.png 이미지

Table 5. Recession coefficients (k) of seasonal MRCs

HKSJBV_2019_v21n1_34_t0005.png 이미지

Table 6. MRC equations and R2 of each station for four seasons of each gauging stations

HKSJBV_2019_v21n1_34_t0006.png 이미지

References

  1. Arnold, J. G., Allen, P. M. (1999). Automated Methods For Estimating Baseflow And Ground Water Recharge From Streamflow Records. Journal of the American Water Resources Association, 35(2); 411-424. doi:10.1111/j.1752-1688.1999.tb03599.x
  2. Bae, D. H., Jeong, I. won, Kang, T. H., Noh, J. W. (2003). Automatic Parameter Estimation Considering Runoff Components On Tank Model. Journal of Korea Water Resource Association, 3(2003); 423-436. [Korean Literature]. doi:10.3741/JKWRA.2003.36.3.423
  3. Berhail, S., Ouerdachi, L., Boutaghane, H. (2012). The Use Of The Recession Index As Indicator For Components Of Flow. Energy Procedia, 18; 741-750. doi:10.1016/j.egypro.2012.05.090
  4. Blume, T., Zehe, E., Bronstert, A. (2007). Rainfall - Runoff Response, Event-based Runoff Coefficients And Hydrograph Separation. Hydrological Sciences Journal, 52(5); 843-862. doi:10.1623/hysj.52.5.843
  5. Brodie, R. S., Hostetler, S. (2005). A Review Of Techniques For Analysing Baseflow From Stream Hydrographs. Proceedings of the NZHS-IAH-NZSSS 2005 conference, Vol. 28.
  6. Cartwright, I., Morgenstern, U. (2015). Transit times from rainfall to baseflow in headwater catchments estimated using tritium: the Ovens River, Australia. Hydrology and Earth System Sciences, 19(9); 3771-3785. doi:10.5194/hess-19-3771-2015
  7. Chapman, T. (1999). A Comparison Of Algorithms For Stream Flow Recession And Baseflow Separation. Hydrological Processes, 13(5); 701-714. doi:10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
  8. Chiew, F. H. S. (2006). Estimation Of Rainfall Elasticity Of Streamflow In Australia. Hydrological Sciences Journal, 51(April); 613-625. doi:10.1623/hysj.51.4.613
  9. Choi, Y. H., Park, Y. S., Ryu, J., Lee, D. J., Kim, Y. S., Choi, J., Lim, K. J. (2014). Analysis Of Baseflow Contribution To Streamflow At Several Flow Stations. Journal of Korean Society on Water Environment, 30(4); 441-451. [Korean Literature]. doi:10.15681/KSWE.2014.30.4.441
  10. Eckhardt, K. (2005). How To Construct Recursive Digital Filters For Baseflow Separation. Hydrological Processes, 19; 507-515. doi:10.1002/hyp.5675
  11. Kim, H. S., Han, M. S., Lee, D. R. (1999). Estimation And Analysis Of Base Flow Recession Characteristics. Proceedings of the 1999 Conference of the Korea Water Resource Association, Korea Water Resource Association; 361-367. [Korean Literature].
  12. Web Hydrograph Analysis Tool (WHAT) (2005). https://engineering.purdue.edu/mapserve/WHAT/
  13. Ministry Consturction & Transportation. (2006). National Water Resource Plan.
  14. Nagelkerke, N. J. (1991). A Note On A General Definition Of The Coefficient Of Determination Miscellanea A Note On A General Definition Of The Coefficient Of Determination, Biometrika, 78(3); 691-692. https://doi.org/10.1093/biomet/78.3.691
  15. Nathan, R. J., McMahon, T. A. (1990). Evaluation Of Automated Techniques For Base Flow And Recession Analyses. Water Resources Research, 26(7); 1465-1473. doi:10.1029/WR026i007p01465
  16. Posavec, K., Bacani, A., Nakic, Z. (2006). A Visual Basic Spreadsheet Macro For Recession Curve Analysis, Ground Water, 44(5); 764-767. doi:10.1111/j.1745-6584.2006.00226.x
  17. Posavec, K., Parlov, J., Nakic, Z. (2010). Fully Automated Objective-based Method For Master Recession Curve Separation. Ground Water, 48(4); 598-603. doi:10.1111/j.1745-6584.2009.00669.x
  18. Rutledge, A. T. (1998). Computer Programs for Describing the Recession of Ground-water Discharge and for Estimating Mean Ground-water Recharge and Discharge from Streamflow Records-Update, U.S. Geological Survey.
  19. Rutledge, A. T. (2007). Update on the Use of The RORA Program for Recharge Estimation, Ground Water, 45(3); 374-382. doi:10.1111/j.1745-6584.2006.00294.x
  20. Schilling, K. E., Wolter, C. F. (2001). Contribution ff Base Flow to Nonpoint Source Pollution Loads in an Agricultural Watershed, Ground Water, 39(1); 49-58. doi:10.1111/j.1745-6584.2001.tb00350.x
  21. Sloto, R. a., Crouse, M. Y. (1996). Hysep: A Computer Program for streamflow hydrograph separation and analysis, U.S. Geological Survey.
  22. Willems, P. (2009). A Time Series Tool To Support The Multi-criteria Performance Evaluation Of Rainfall-runoff Models. Environmental Modelling and Software, 24(3); 311-321. doi:10.1016/j.envsoft.2008.09.005