DOI QR코드

DOI QR Code

Harmony Search for Virtual Machine Replacement

화음 탐색법을 활용한 가상머신 재배치 연구

  • Received : 2018.11.06
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

By operating servers, storage, and networking devices, Data centers consume a lot of power such as cooling facilities, air conditioning facilities, and emergency power facilities. In the United States, The power consumed by data centers accounted for 1.8% of total power consumption in 2004. The data center industry has evolved to a large scale, and the number of large hyper scale data centers is expected to grow in the future. However, as a result of examining the server share of the data center, There is a problem where the server is not used effectively such that the average occupancy rate is only about 15% to 20%. To solve this problem, we propose a Virtual Machine Reallocation research using virtual machine migration function. In this paper, we use meta-heuristic for effective virtual machine reallocation. The virtual machine reallocation problem with the goal of maximizing the idle server was designed and solved through experiments. This study aims to reducing the idle rate of data center servers and reducing power consumption simultaneously by solving problems.

데이터센터는 서버, 스토리지, 네트워킹 기기 등을 운영하는 과정에서 냉각시설, 공조시설, 비상발전시설 등 많은 전력이 소비된다. 미국의 경우에는 2004년 데이터센터에서 소비하는 전력은 전체 전력 소비량의 1.8% 정도를 차지하기도 하였다. 데이터센터 산업은 큰 규모로 점진적으로 발전해왔으며, 향후에는 규모가 큰 하이퍼스케일 데이터센터의 수가 늘어날 것으로 전망되고 있다. 하지만 데이터센터의 서버 점유율을 조사해 본 결과, 평균 점유율이 15~20% 정도 밖에 되지 않는 등 서버가 효율적으로 사용되지 않는 문제가 존재하였다. 이러한 현상 및 문제점을 개선하고자 가상머신 마이그레이션 기능을 활용하여 가상머신 재배치 연구를 제안하고자 한다. 본 연구에서는 효과적인 가상머신 재배치를 위해 메타 휴리스틱 기법 중 하나인 화음 탐색법을 활용하였다. 유휴 서버 최대화를 목표로 하는 가상머신 재배치 문제를 설계하였으며 실험을 통해 풀이하였다. 본 연구는 가상머신 재배치를 통해 데이터센터 서버의 절전을 유도하여, 데이터센터의 운영비용을 절감하는 것을 목적으로 한다.

Keywords

SHGSCZ_2019_v20n2_26_f0001.png 이미지

Fig. 1. Difference between traditional architecture and visualization architecture

SHGSCZ_2019_v20n2_26_f0002.png 이미지

Fig. 2. Example of Virtual Machine Reallocation

SHGSCZ_2019_v20n2_26_f0003.png 이미지

Fig. 3. Representation of (a) 2-D Bin Packing Problem and (b) Virtual Machine Reallocation

SHGSCZ_2019_v20n2_26_f0004.png 이미지

Fig. 4. Representation of VMR Solution (HM)

Table 1. Test data for the experiment

SHGSCZ_2019_v20n2_26_t0001.png 이미지

Table 2. First Fit Decreasing for VMR

SHGSCZ_2019_v20n2_26_t0002.png 이미지

Table 3. Pseudo Code of Harmony Search

SHGSCZ_2019_v20n2_26_t0003.png 이미지

Table 4. Experiment environment

SHGSCZ_2019_v20n2_26_t0004.png 이미지

Table 5. Result of the experiment(# of released Nodes)

SHGSCZ_2019_v20n2_26_t0005.png 이미지

Table 6. Result of the Migration Efficiency

SHGSCZ_2019_v20n2_26_t0006.png 이미지

References

  1. J. H. Bang, "The data center is 'Electric Eating Hippo' & When you are on the Internet,", The Hankyoreh, 2015.06.
  2. Y. J. Bae, "Korea is a data center battleground & Reasons for global companies coming in one after another", Chosun NewsPress, 2017.10.
  3. M. J. KIM, "Gangwon-do Data Center Status and Future Tasks", The Bank of Korea, 2018.04.
  4. Data Center Knowledge, "Research: There are Now Close to 400 Hyper-Scale Data Centers in the World", 2017.12.
  5. W.Vogels, "Beyond Server Consolidation", ACM Queue, 2008.01.-02.
  6. S. Crosby, and D.Brown, "Virtualization reality", ACM Queue, 2006.12.
  7. P. Timalsena, "A Study of The impact of Virtualization on Computer Networks", Master's thesis, 2013.
  8. Redhat, "Virtualization Deployment and Administration Guide"
  9. Eli M. Dow, "Decomposed multi-objective bin-packing for virtual machine consolidation", PeerJ Computer Science, 2016.
  10. S.-H. Wang, P. P.-W. Huang, C. H.-P. Wen, and L.-C. Wang, "Eqvmp: Energy-efficient and qos-aware virtual machine placement for software defined datacenter networks," in Information Networking (ICOIN), 2014 International Conference on. IEEE, pp. 220-225, 2014.
  11. T. Ferreto, C. A. De Rose, and H.-U. Heiss, "Maximum migration time guarantees in dynamic server consolidation for virtualized data centers," in Euro-Par 2011 Parallel Processing. Springer, pp. 443-454, 2011.
  12. D. Dong and J. Herbert, "Energy efficient vm placement supported by data analytic service," in Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on. IEEE, pp. 648-655, 2013
  13. X. Zhang, Q. Yue, and Z. He, "Dynamic energy-efficient virtual machine placement optimization for virtualized clouds," in Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation (EITRT2013)-Volume II. Springer, pp. 439-448, 2014.
  14. W. Shi and B. Hong, "Towards profitable virtual machine placement in the data center," in Utility and Cloud Computing (UCC), 2011 Fourth IEEE International Conference on. IEEE, pp. 138-145, 2011.
  15. I. Hwang and M. Pedram, "Hierarchical virtual machine consolidation in a cloud computing system," in Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on. IEEE, pp. 196-203, 2013.
  16. H. Jin, D. Pan, J. Xu, and N. Pissinou, "Efficient vm placement with multiple deterministic and stochastic resources in data centers," in Global Communications Conference (GLOBECOM), 2012 IEEE. IEEE, pp. 2505-2510, 2012.
  17. W. Li, J. Tordsson, and E. Elmroth, "Virtual machine placement for predictable and time-constrained peak loads," in Economics of Grids, Clouds, Systems, and Services. Springer, pp. 120-134. 2012.
  18. O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Silvera, "A stable network-aware vm placement for cloud systems," in Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society, pp. 498-506, 2012.
  19. W. Wang, H. Chen, and X. Chen, "An availability-aware virtual machine placement approach for dynamic scaling of cloud applications," Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference on. IEEE, pp. 509-516, 2012.
  20. Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, "A multi-objective ant colony system algorithm for virtual machine placement in cloud computing," Journal of Computer and System Sciences, vol. 79, no. 8, pp. 1230-1242, 2013. https://doi.org/10.1016/j.jcss.2013.02.004
  21. C. C. T. Mark, D. Niyato, and T. Chen-Khong, "Evolutionary optimal virtual machine placement and demand forecaster for cloud computing," in Advanced Information Networking and Applications (AINA), 2011 IEEE International Conference on. IEEE, pp. 348-355, 2011.
  22. A. C. Adamuthe, R. M. Pandharpatte, and G. T. Thampi, "Multiobjective virtual machine placement in cloud environment," in Cloud & Ubiquitous Computing & Emerging Technologies (CUBE), 2013 International Conference on. IEEE, pp. 8-13, 2013.
  23. G. Wu, M. Tang, Y.-C. Tian, and W. Li, "Energy-efficient virtual machine placement in data centers by genetic algorithm," in Neural Information Processing. Springer, pp. 315-323, 2012.
  24. J. Xu and J. A. Fortes, "Multi-objective virtual machine placement in virtualized data center environments," in Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical and Social Computing (CPSCom). IEEE, pp. 179-188, 2010.
  25. Y. Wu, M. Tang, and W. Fraser, "A simulated annealing algorithm for energy efficient virtual machine placement," in Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on. IEEE, pp. 1245-1250, 2012.
  26. T. Ferreto, C. A. De Rose, and H.-U. Heiss, "Maximum migration time guarantees in dynamic server consolidation for virtualized data centers," in Euro-Par 2011 Parallel Processing. Springer, pp. 443-454, 2011.
  27. A. Murtazaev, SY. Oh, "Sercon: Server Consolidation Algorithm using Live Migration of Virtual Machines for Green Computing", IETE Technical Review, 28:3, 212-231, 2014. https://doi.org/10.4103/0256-4602.81230