Acknowledgement
Supported by : National Natural Science Foundation of China, Southeast University, China Scholarship Council
References
- Alcala, C.F. and Qin, S.J. (2011), "Analysis and generalization of fault diagnosis methods for process monitoring", J. Process Contr., 21(03), 322-330. https://doi.org/10.1016/j.jprocont.2010.10.005
- Amiri, M. and Jensen, R. (2016), "Missing data imputation using fuzzy-rough methods", Neurocomputing, 205(C), 152-164. https://doi.org/10.1016/j.neucom.2016.04.015
- Bi, W., Zhang, A. and Yuan, Y. (2017), "Combination method of conflict evidences based on evidence similarity", J. Syst. Eng. Electron., 28(3), 503-513. https://doi.org/10.21629/JSEE.2017.03.10
- Chang, C.M., Chou, J.Y., Tan, P. and Wang, L. (2017), "A sensor fault detection strategy for structural health monitoring systems", Smart Struct. Syst., 20(1), 43-52. https://doi.org/10.12989/SSS.2017.20.1.043
- Chen, C.C., Wu, W.H., Huang, C.H. and Lai G. (2013), "Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements", Smart Struct. Syst., 11(4), 411-433. https://doi.org/10.12989/sss.2013.11.4.411
- Dasarathy, B.V. (1994), Decision Fusion, IEEE Computer Society Press, Amsterdam, Netherlands.
- Hernandez-Garcia, M.R. and Masri, S.F. (2013), "Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks", J. Intel. Mat. Syst. Str., 25(2), 121-136. https://doi.org/10.1177/1045389X13479182
- Huang, H.B., Yi, T.H. and Li H.N. (2015), "Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach", J. Aerospace Eng., 30(2), B4015003. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000572
- Huang, H.B., Yi, T.H. and Li, H.N. (2016), "Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks", Smart Struct. Syst., 17(6), 1031-1053. https://doi.org/10.12989/sss.2016.17.6.1031
- Huang, H.B., Yi, T.H. and Li, H.N. (2017), "Bayesian combination of weighted principal-component analysis for diagnosing sensor faults in structural monitoring systems", J. Eng. Mech., 143(09), 04017088. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001309
- Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M. (2004), "Methods for imputation of missing values in air quality data sets", Atmos. Environ., 38(18), 2895-2907. https://doi.org/10.1016/j.atmosenv.2004.02.026
- Kerschen, G., De Boe, P., Golinval, J.C. and Worden, K. (2004), "Sensor validation using principal component analysis", Smart Mater. Struct., 14(01), 36-42. https://doi.org/10.1088/0964-1726/14/1/004
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Kullaa, J. (2011), "Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring", Mech. Syst. Signal Pr., 25(8), 2976-2989. https://doi.org/10.1016/j.ymssp.2011.05.017
- Li S., Zhu, S., Xu, Y.L., Chen, Z.W. and Li, H. (2012), "Long-term condition assessment of suspenders under traffic loads based on structural monitoring system: application to the Tsing Ma Bridge", Struct. Control Health., 19(1), 82-101. https://doi.org/10.1002/stc.427
- Narasimhan, S. and Mah, R.S.H. (1987), "Generalized likelihood ratio method for gross error identification", AIChE J., 33(09), 1514-1521. https://doi.org/10.1002/aic.690330911
- Qin, Z., Chen, L. and Bao, X. (2012), "Wavelet denoising method for improving detection performance of distributed vibration sensor", IEEE Photonic. Tech. L., 24(05), 542-544. https://doi.org/10.1109/LPT.2011.2182643
- Reppa, V., Polycarpou, M.M. and Panayiotou, C.G. (2014), "Adaptive approximation for multiple sensor fault detection and isolation of nonlinear uncertain systems", IEEE T. Neural Netw. Learn. Syst., 25(1), 137-153. https://doi.org/10.1109/TNNLS.2013.2250301
- Sun, L. and Chen, L. (2015), "Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives", J. Sound Vib., 335, 19-33. https://doi.org/10.1016/j.jsv.2014.09.016
- Tamhane, A.C., Iordache, C. and Mah, R.S. (1988), "A Bayesian approach to gross error detection in chemical process data: Part I: Model development", Chemometr. Intell. Lab., 4(1), 33-45. https://doi.org/10.1016/0169-7439(88)80011-X
- Tong, H. and Crowe, C.M. (1995), "Detection of gross errors in data reconciliation by principal component analysis", AIChE J., 41(7), 1712-1722. https://doi.org/10.1002/aic.690410711
- Xing, D., Zhang, L. and Duan, Y. (2012), "Research on long-span bridge health monitoring data pre-processing based on wavelet analysis", Highway Eng., 37(2), 33-36. https://doi.org/10.3969/j.issn.1674-0610.2012.02.010
- Yang, J.B. and Xu, D.L. (2002), "On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty", IEEE T. Syst. Man Cy., 32(3), 289-304. https://doi.org/10.1109/TSMCA.2002.802746
- Yi, T.H., Huang, H.B. and Li, H.N. (2017), "Development of sensor validation methodologies for structural health monitoring: a comprehensive review", Measurement, 109, 200-214. https://doi.org/10.1016/j.measurement.2017.05.064
- Yi, T.H., Li, H.N., Song, G. and Guo, Q. (2016), "Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart", Int. J. Struct. Stab. D., 16(4), 1640024. https://doi.org/10.1142/S0219455416400241
- Zhou, H., Sun, L. and Xing, F. (2014), "Free vibration of taut cable with a damper and a spring", Struct. Control Health., 21(6), 996-1014. https://doi.org/10.1002/stc.1628
- Zhu, D., Bai, J. and Yang, S.X. (2009), "A multi-fault diagnosis method for sensor systems based on principle component analysis", Sensors, 10(1), 241-253. https://doi.org/10.3390/s100100241
Cited by
- Sequential Measurement and Analysis of Large Underground Retaining Structures by Diaphragm Wall Anchor for the Spring Area vol.2019, 2019, https://doi.org/10.1155/2019/5291420
- Anomaly detection for large span bridges during operational phase using structural health monitoring data vol.29, pp.4, 2020, https://doi.org/10.1088/1361-665x/ab79b3
- Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies vol.10, pp.3, 2019, https://doi.org/10.1007/s13349-020-00402-7